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RICHARD RUTTER GROSS. Using Software Technology to Specify Abstract Interfaces in VLSI
Design. (Under the direction of PETER CALINGAERT.)

ABSTRACT

Good techniques for VLSI design change management do not now exist. A principal reason
is the absence of effective methods for the specification of abstract interfaces for VLSI designs.
This dissertation presents a new approach to such specification, an approach that extends to the
VLSI domain D.L. Parnas's techniques for precise specification of abstract software design inter-
faces to the VLSI domain. The proposed approach provides important new features, including
scalability to VLSI design levels, integration into the design life-cycle, and a uniform treatment of
functional, electrical, and geometric design information. A technique is also introduced for
attaching a value to the degree of specification adherence of a candidate module.

To illustrate and evaluate the proposed approach, an example specification method using it
is described and evaluated experimentally.
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CHAPTER 1

INTRODUCTION

* 1.1 Definition of the Problem.

VLSI design is integrated circuit design in which brute force no longer works. The major

concern in VLSI design is the management of complexity [Mudg8l, Siqu83], not just putting

together a system with whatever means are handy.

Traditional techniques for complexity management, such as hierarchy, restriction, and struc-

turing, have been applied in the VLSI context: nevertheless, the design process is still costly, and

hundreds of designer-years are being invested in the development of state-of-the-art VLSI circuits

ILattSl, Cane83]. The unconstrained nature of the VLSI design medium leads to some of this cost

[Skqu83], in that only inefficient algorithms are available to apply to the typically NP-hard prob-

lems, such as one-dimensional placement [Valt821 and optimal routing [John82, encountered in

design construction and verification. Nevertheless, while such traditional costs of VLSI design are

still the subject of much research, another source of cost, only lately recognized, is becoming a

major concern among designers. This cost arises from the Tipple effect of changes during the

design process [Wern83], and its seriousness stems from its particular sensitivity to the increases

in complexity that characterize modern VLSI design. Belady and Lehman's work [Bela7g], for

example, suggests that for software systems "increasing system complexity leads to a regenerative,

highly non-linear, increase in the effort and cost of system maintenance and also limits ultimate

system growth." While similar studies, to my knowledge, have not yet been directed specifically

at VLSI systnms evolution, there is good reason to suspect that the effects of progressive changes

on VLSI systems are comparable.

Furthermore, this "cost of change" compounds in the following way. Competitive pressures
for denser, more capable, and hence more complex circuits beget increased refinement of designs,

or increased change. Such increased change, Werner notes, is necessitated by elevated perfor-

mance standards for modern chips, possibly even requiring retrofitting a design in progress to

include new technologies or capabilities. However, the same competitive pressures also demand

early production of these more-complex chips, so that larger teams, partitioning the design task,

are assembled to meet delivery schedules accelerated by intense competition. Increasing complex-

ity thus has two effects: 11) more change; and (2) larler design teams. As Brooks jBroo751 notes,

... '
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either effect alone increases the amount of communication required in the design project, and the

cost of this communication must be added to the amount of design work to be done. The combi-

nation of these effects compounds costs of communication and thus of design, making the cost fac-

tors of design in the multi-designer environment significantly different from those that have been

tradiLionally applied.

Consequently, as VLSI circuits grow larger, the cost of change management, especially in

the now-typical multi-person design effort, may well become the primary concern in the VLSI

design process. Because current VLSI design techniques focus primarily on developing correct ini-

tial designs and not yet on the management of design change, the development and study of VLSI

design change management techniques are timely and important.

1.2 Potential Contribution from Sofltuare Engineering Techniques.

There have been numerous recent suggestions (for example, see [Rade82, Kuni84, Musa85])

that transfer of design technology from software engineering, which has dealt with systems with

similar numbers of components for at least a decade, might either improve the theoretical base for

VLSI design or at least enhance the effectiveness of emerging VLSI design methodologies. Siquin

IStqu83] supports this suggestion by listing the following software design characteristics that pos-

* ~ sess counterparts in VLSI design.

- . a. Appropriate design representations are crucial to design success.

b. Abstraction provides an appropriate vehicle for dealing with complexity. The possibility uf

V- exploiting such abstractions, using high-level languages, is promising.

c. At the lowest level, on the other hand, the design may be restricted to a limited st of well-

understood constructs.

d. The design task can be partitioned and structured. For example, functional design can be

separated from implementation.

e. Testing of the fiuial realization against a well-defined system specification is essential.

f. "Of crucial importance in the construction of large and complex systems is a good set of tools

-- and a suitable design method."

In contrast to VLSI design, software engineering has seen much research directed toward design

methodologies, and the application of principles from these methodologies to VLSI design is a

promising and relatively unexplored idea. Such adaptation of software engineering methodologies

, f....................................
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to VLSI design is certainly nontrivial, because the latter must take into account additional con-

cerns such as geometric and electrical limitations. Nevertheless, it is readily conceivable that

transfer of concepts from software engineering could contribute to the development of an

improved theoretical base in VLSI design. Such improvement would aid both the teaching of

VLSI design principles and the construction of more capable automated design tools.

Despite the quantity of methodological research in software engineering, however, most

modern software design methodologies do not specifically address the factor of change in the

design process. In this regard, the software design techniques of D.L. Parnas are conspicuously

exceptional. His techniques, specifically those of information hiding, hierarchical structuring for

design families, and precise specification, have demonstrated the potential to become the nucleus

of a coherent approach to the software change management problem. The overall motivation for

my current research, then, has been to investigate how these techniques can be applied to manage

change in the VLSI design proce ',.

1.9 Determination of Research Objectives.

A research program that conscientiously investigates the transferability of Parnas's tech-

niques to VLSI design change management would include:

a. An extension of information hiding, hierarchical structuring for families of designs, and pre-

cise specification into the VLSI domain by:

(1) developing a realistic model of the contemporary VLSI design process;

(2) identifying in the model the points at which decisions crucial to the techniques are

made;

(3) constructing for these decision points a set of criteria that guide effective design change

management.

b. The development of an integrated set of VLSI tools that enable a designer to use the cri-

teria developed in task a to manage design change.
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c. An assessment of the effectiveness and extensibility of the design change management pro-

cedure so devised.

The scope of such a research program clearly exceeds that of a single dissertation. Conse-

quently, it has been necessary to identify and order the component research problems embodied

by this program.

1.8.1 Component Research Problem& and Their Interdependencieo.

1.5.1.1 Specifying Abstract Interfaceofor VLSI Desigrs.

Britton, Parker, and Parnas [Brit8la define an "interface" between two programs as "the

set of assumptions that each programmer needs to make about the other program in order to

demonstrate the correctness of his own program." An abstract interface specification, in their

sense of the term, has been carefully limited in content to a description of only these assumptions,

so that the specification describes not a single interface but a class of interfaces. More than one

module or design thus fits the interface, and the interface is robust under certain types of changes.

Abstract interface specification of VLSI design modules is a largely unstudied problem. This

lack of attention is surprising in light of the growing realization that existing VLSI design

specification techniques are inadequate:
there are no real tools for developing and simulating high-level specifications, so most work mnust
be done by hand. There are also problems with casting the specification in the proper form ....The
process of specification is intimately involved with the kinds of design tools available [WaI841.

I believe that the primary reason for this inadequacy is that most references to "specification" in

VLSI are to clear-boz specifications, frequently at the logic level, Clear-box specifications address

module interfaces only indirectly, by prescribing an implementation of internal module logic or

circuitry. Clear-box specifications, then, blur architectural and implementational concerns;

abstract interface, or "black-box," specifications keep these concerns separate. At VLSI complex-

ity levels, separation of these concerns is essential. Clear-box specification techniques do not scale

up, as can be plainly seen from the difficulty of interring the function from even an MSI-level cir-

cuit diagram. More seriously, however, the merging of architectural and implementation issues in

large-scale system design significantly hinders the partitioning of the design task and degrades (if

not destroys) the conceptual unity, hence the usefulness and robustness to change, of the resulting

system [BlaaSl]. The development of effective abstract interface specificatic techniques for VLSI

designs is thus of critical importance.

, ,, :. ?.?//- .. .... ........ . . .. .. .......-. ,_.....-,. . .... ,.,
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1.&..t Quantifying Ese of Change of VLSI Designs.

One criticism justly raised about methodological research is that claimed benefits for pro-

posed methods are frequently unsubstantiated. To avoid this criticism, one would like to have an

impartial means of quantifying the degree to which a given VLSI design is easy or difficult to

change; then, based on this quantification, the merits of various change management techniques

could be compared.

Preliminary investigation into quantifying ease of change suggests that, first, a metric is

needed for change itself, so that the "difference" between two VLSI designs can be measured. A

modest amount of experimentation into developing a change metric was conducted in the context

of this exploration [Gros84]. This experimentation investigated measuring VLSI design change as

a difference in design information content, going on to attempt to measure design information by

counting various iiscrete design components (analogous to software science approaches such as

those described by Halstead [Hals77J, McCabe [McCa761, or Albrecht and Gaffney [Albr83]).

Techniques employing such approaches will probably need to be complex to capture design infor-

mation content successfully. Further, there may be assumptions embedded in the design that

render desirable information components uncountable, suggesting that such metrics must be

derived from a design representation that also embodies these assumptions. An abstract interface

specification for the design is such a representation.

1.8.1.8 Using Information Hiding in VLSI Design Modularization.

The decomposition of a VLSI design into modules is an important phase of the design pro-

cess. In a study ol decomposition criteria, Heath fHeat83J has found that information hiding

[Parn72b, Brit8la] is a desirable basis for VLSI design decomposition whenever robustness under

change is a primary design objective. At the same time, however, he notes that VLSI design

modularization, using any criterion, requires the external aspects of each module to be

"sufficiently and precisely specified." Because information hiding and modularization are so

directly interconnected, precise interface specification techniques for VLSI designs are essential if

the .enefits of information hiding are to be obtained.

-%%%



. 1.8.1.4 Creating Broad Femilies of VLSI Design#.

Panus [Parn76a characterizes a set of programs as a family "whenever it is worthwhile to

study programs from the set by first studying the common properties of the set and then deter-

mining the special properties of the individual family members." It would be useful to learn

whether considering the successive versions of an evolving VLSI design as a family has the poten-

tial to reduce the cost of VLSI design development and maintenance. There is some evidence in

the affirmative [Gros83b].

Nevertheless, exploiting the family concept depends critically on the availability of

precisely-specified intermediate design* that can serve as checkpoints for design backtracking. To

the extent that these intermediate designs can be characterized by their interfaces, progress in

research seems to hinge once again on the availability of techniques for VLSI design interface

specification.

1.8.1.5 Determining Extent of Required Revalidation Following VLSI Design Change.

The decision to change a VLSI design brings about the following activities.

a. Determine the nature and scope of the change required.

b. Perform the change.

c. Ensure the correctness of the design by testing following the change.

Full testing of the design following each change, however, is costly and often unnecessary. Unfor-

tunately, there currently exist no suitable ways to determine which subsets of the design might

have been affected by a given change; thus one cannot be sure that anything less than full testing

will suffice. Techniques are required to assist the designer in making such a determination.

This problem is a chief reason that information hiding was developed in the software

domain. An extension of information hiding to VLSI design that would address this problem

requires that an abstract interface be specified at the boundaries of each design component to

which change effects are to be localized. The existence of such a specification would reduce test-

ing of any changed design to the assurance that each changed module continued to meet its inter-

face specifications. Even if such interface specifications were not met, the affected boundary

modules would be clearly identified for follow-on modification and testing.

.- p

-p p



1.8., Dieertation Overview.

The dissertation is organized as follows. Chapter 2, after defining key terms and criteria,

summarizes the research reported in the literature to date in developing methods for VLSI design

interface specification. In chapter 3, 1 present an abstract interface specification method, an

extension of Parnas's software specification techniques. I do not contend that either the specific

method described, or the notation used to express it, is optimal; rather, I argue for the desirability

of the approach thus exemplified.

Its advantages and disadvantages are as follows:

- The approach achieves practical scalability to VLSI design levels through precise partitioning

of concerns and the exploiting of abstraction: the complexity of the specification appears to

grow slowly with design scale. Pressing the separation of concerns to the ultimate, I made a

major decision, to partition module semantics per-pin (instead of per-module, as is conven-

tional). This radical partitioning enhances scalability, complexity control, and change

management, at the cost of making it somewhat more difficult to specify constraints global to

the module.

The proposed specification starts by capturing high-level concerns that are then evolved into

more particular specifications as details become available over the course of the design. The

specification not only evolves in detail, it remains an active component of the design, subject

to intentional revision occasioned by new insights from the detailing.

- The same mechanisms are used for each of functional, electrical, and geometric information.

- A new technique is included for attaching a value to the degree of specification adherence of a

candidate module. Using this technique, the specifier can communicate knowledge of the mar-

ginal utility of design tradeoffs to the implementer. The technique is complex, however, and

needs to be made more efficient to be practical.

The proposed interface specification method consists of:

- A black-box finite-state-machine model, together with a generic data type for pin and internal

state variables (the generic etate type) identifying the level of the specification. Specification

refinement corresponds to evolutionary refinement of this data type. Data type syntactic and

semantic components are distinguished, the former being statically verifiable and the latter

requiring dynamic verification. This partitioning of concerns permits further simplification.

.1!
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- An extension of Parnas's acces## function as a key specification element, partitioning module

function into per-pin components.

- Adherence functions, which attach a value to the degree to which a module adheres to a given

specification. Specification adherence is defined in terms of a Zadeh fuzzy set [Zade75,

Zade841.

I next discuss sequencing and performance issues in the composition of such specifications. I

show how access functions are treated as "communicating sequential processes" (CSP) in Hoare's

sense, and show how his CSP notation can be used to express these functions. I also address four

issues relating to such use of CSP:

- The power of CSP as an interface specification notation.

- Rules of thumb for expressing data and control pin access functions in CSP.

- The degree of module function partitioning that can be attained in various situations. The

worst case is one in which a single master control pin effects all module function.

- Requirements of a base language for implementing CSP. CSP is a notation, not a language.

In closing chapter 3, 1 cite specific characteristics of the VLSI design process that might be

used to simplify specifications. In general, these involve restrictions on the general model:

- Restriction to the use of a standard, portable base language.

- Restriction of the specification refinement hierarchy to certain predefined semantic and syntac-

tic levels, promoting reusability of generic state type definitions.

- Restriction of the adherence function space to a set of standard adherence functions (candi-

dates are presented).

In chapter 4, 1 report on an evaluation of the proposed abstract interface specification

method with respect to the criteria established in chapter 2. The evaluation is based on experi-

ence with a set of four real small- to large-scale IC modules which were specified, using the pro-

posed method, at various semantic and syntactic refinement levels. These specifications are pro-

vided in an appendix.

To evaluate the perceived cost-effectiveness (scalability) of the method at VLSI design levels, I

consider specification size as a function of design size. The data suggest that this specification

approach is feasible for very-large-scale designs.



- To test the fife-cycle integration of the method, I Arst measure the relative amount of change

in the test specifications as they are refined, finding that a significant fraction of each test

specification is preserved unchanged through refinement.

- To examine the spareness of the method, I informally review each of its elements for overlap

with the others.

- To estimate the method's effectiveness in managing change, I conduct a series of experiments.

The first demonstrates the robustness of subordinate specifications when a parent specification

is changed. The second illustrates the conditions under which specification changes affect

nearby modules. In the third, real-world changes are applied to an actual specification with

only minor effects.

Chapter 5 contains conclusions and suggestions for future research.

I,
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CHAPTER 2

SURVEY OF PREVIOUS RESEARCH

The previous chapter suggested that elective techniques for specification of abstract VLSI

design interfaces would help manage change in the VLSI design process. This chapter will

describe and evaluate the effectiveness of existing VLSI design interface specification methods.

Some historical background will place this survey in context. A rough parallel can be drawn

between the evolution of design methodologies for software and for integrated circuits, although

the paths are offset in time by perhaps 10-15 years. In the software community, there was little

recognition of the importance of specifications before system complexity exceeded manageable

bounds. Even now (as Yeh [Yeh83] observes), certainly not all software designers have internal-

ized the recognition that the complexity of modern systems is truly beyond their intellectual span

of control. One expects, therefore, a parallel reluctance by IC designers to admit that complexity

has become overwhelming. Because MSI and LSI complexity levels do not compel an emphasis on

specification, "specification" and "interface" are terms that have yet been mentioned only infre-

quently in the IC design literature.

This is not to say that the specification and interface definition functions have not been per-

formed in IC design, or even in VLSI design. These functions, however, have been called by

different names, leading to some semantic confusion. To define them clearly here, I will first pro-

vide a model of the VLSI design process, a model that will show the role of VLSI design interface

specifications. Based on this model, I will define "VLSI design abstract interface specification."

Finally, I will survey the important published work that has been done so far in developing VLSI

design interface specification techniques.

2.1 Definitions.

2.1.1 The Integrated Circuit (IC) Design Process; the VLSI Design Process.

Definitions. The IC design process is a sequence of elaborations that synthesize, from a design

concept, a form suitable for fabrication. The VLSI design process is the IC design process applied

to the design of very-large-scale circuits.

U .,_- I .'ig . _, v ' " -..... ,"•" -2 , ,"-"" -. .."" ""..- " "" "% .,, " - - :..,- . ' ---.-- ,-- -'g_- , ..... :.'.'.,.... .



Diecuouion. Figure 2-1 illustrates a hierarchical model of the contemporary IC design process.

The designer starts with a concept, either of the complete system or of a system component. The

goal of the design is a description of the design in a form suitable for fabrication [Trim8l]. To

manage complexity, the designer subdivides the monolithic concept-to-fabrication transformation

into a sequence of elaboration steps, the result of elaboration (uzntheeie) at each each step being

an intermediate repreuentation (or "description"; cf. [Lehm84]). Each representation, then, con-

tains more information, in Shannon's sense [Shan491, than its predecessor; it serves as a milestone

in the descent of a tree of potential designs that could be developed from the original concept.

Representations frequently employed in IC design are, for example, the floorplan, the logic

diagram, the layout, and so on; each embodies additional information about the design.

Synthesis and representation, however, are not the only activities that take place at each

elaboration step. Two additional activities - verification and evaluation - are required at each

step to ensure the accurate progress of the design effort (Figure 2-2). Redoing the current step or

backtracking to a previous step may be required.

Designer's Concept

I

Representation 1

I

Representation 2

I

Representation n

I

Form Suitable for Fabrication

Figure 2-1. The IC Design Process.
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The IC design process, therefore, is the hierarchical repetition, possibly with backtracking,

of the four steps defined in Figure 2-2. Furthermore, in the IC system design process, Figure 2-1

should be visualized as being replicated many times, once for each design component (such as a

cell), so that a representation of the total design consists of a compatible set of representations for

all components.

The definition of the VLSI design process correctly identifies its component activities as the

same as those for IC design. As I noted in chapter 1, however, "VLSI design is IC design in which

brute force no longer works." The requirement for using complexity management techniques in

the design elaborations distinguishes VLSI design from IC design at lesser levels of integration.

1.1.2 Interface; Abstract Interface.

Definitions. An interface (between two design modules) is the set of assumptions that each

module designer needs to make about the other module to demonstrate the correctness of his/her

own module. An abstract interface is an interface containing no assumptions about the internal

composition of the module.

- Synthesis: the elaboration of one level of description into the next lower level.

- Description: the construction of an abstract model of a system (a representation) that details
properties specific to a given purpose.

- Verificatior: a semi-formal process whereby tie design at a particular level is shown to be
equivalent, in either behavior or structure [or ',oth], to one or more higher-level designs.

- Evaluation: the assessment of the degree to which the design meets (1) physical and perfor-
mance requirements and constraints; and (2) criteria of behavioral and structural complete-
ness.

Figure 2-2. Activities Performed at an IC Design Step.
[Boeh8I, LattSl, DallS31
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Discuston. Recall the definition of "interface" given in chapter 1: "the set of assumptions that

each programmer needs to make about the other program to demonstrate the correctness of

his/her own program." Replacing "programmer" with "designer" and "program" with "design"

yields a definition appropriate to the IC design process. Also from chapter 1, recall that an

"abstract" interface specification has the additional property that the specification must not con-

tain assumptions about the internal composition of the module (its implementation).

Nearly every representation of an IC design component is an interface specification, in that

it provides the basis for other designers to draw some interface assumptions. For example, a logic

diagram is frequently used as an interface specification, because it is believed that most designers

can infer the interface from the diagram. But, for the reasons noted earlier, such representation-

based (or "clear-box") specification techniques are inadequate at VLSI complexity levels.

Much less frequently are abstract interface specifications encountered in IC design. Britton,

Parker, and Parnas's research [Brit8la] demonstrates that specifying an abstract interface is a

deceptively difficult process: identifying and precisely specifying all the essential assumptions

making up an interface, without over-constraining the definition with excess or improper assump-

tions, require both substantial knowledge of the project and of the underlying technologies.

'vertheless, I do not believe that VLSI designers can deal effectively with complexity and change
until good abstract interface specification techniques are developed.

f.1.8 Frame; Specification.

Definitions. A frame is a design description assumed to be correct in all that it states or implies

about the design. A specification is a highest-level (therefore unverifiable) description that serves

as a frame for subsequent verification activities.

Discuosion. Dallen [Dal1831 provides a good general definition of the term specification: "an ideal-

ized abstraction of the system being designed." What is the role of a specification in the design

process, however? Lehman, Stenning, and Turski [Lehm84] identify it, once again in the context

of the software domain, when they state:

Calculability of program correctness implies that 'correctness' is not an attribute a program may
or may not possess when considered in isolation. An external frame of reference must be provided
with respect to which the calculations are meaningful. This frame of reference for establishingcorrectness of a program is often referred to as a opecific stios.

4oJ
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% I have shortened Lehman, Stenning, and Turski's phrase "frame of reference for establishing

correctness" simply to the word frame. A physical frame both constrains and allows freedom

within its constraints; thus it is an accurate model of a specification.

Supporting this interpretation, Levene and Mullery [Leve82] identify the role of a

specification from a traditional administrator's viewpoint, but still define it as a frame:

[ (A specificationi should clearly indicate what the intended system is to do, including interaction
with other systems, people, media, and devices, in terms that the customer or users can under-
stand;

- It should be a complete specification for the purposes of the development agency....

- While it is being produced, the partial specification document can be ... referenced for use in
developing other parts. This will also allow it to be maintained whenever the need for changes
is recognized, either during the development of the proposed system or later during its opera-
tional life.

Parnas [Parn77a] also acknowledges the role of specification as frame when he asserts that a

specification is necessary

- To describe the problem to be solved.
- For communication between software engineers
- To free the programmer from needing to know how the rest of the system works.
- To support the development of multi-version software.
- To complete the description of intermediate design decisions [encapsulated, for example, in the

abstract primitives that make up high-level representations in Figure 2-11.
- To permit verification of intermediate design decisions.

A specification, then, is that abstract description of a system that provides a frame for system

verification, for answering the question "Did we build the product right?" [BoehSl]

Since, as I have noted, the word "specification" is infrequently used in a VLSI design con-

text, what part of the VLSI design model is, by virtue of addressing these purposes, a de facto

specification? Consider the initial (top-level) steps in the model of VLSI design developed in sec-

tion 2.1.1. Figure 2-3 expands these initial steps into their four component activities. One of

these activities must be the synthesis, from the (undescribed) designer's concept, of a highest-level

description of the design, a description that cannot be verified since there is no description against

which it can be verified. It is this highest-level, unverified description that I call the specification

of the VLSI design, and it is this description that serves as a frame for verification activities.1

'This is not to say that lower-level descriptions cannot be taken out of their context is one design hierarchy
(Figure 2-1) aud used as specifications in another. For example, a logic diagram might not be a specification is the
context of a complete design but might serve as one in a subset of that deign activity (a separate instastiation of Figure
2-1).

* NZ
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Designer's Concept

I
I ( Synthesis

Representation I -( Description
( Evaluation

I ( Verification

| ( Synthesis
Representation 2 ( Description

[ ( Evaluation
J ( Verification

Figure 2-3. Expansion of the VLSI Design Process
at its Highest Levels.

% Many different types of specification exist. The following list describes some distinguishing

characteristics important for VLSI designs.

(1) Informal vs. Formal. A specification is usually called formal if both the syntax and semantics

of its primitives are mathematically precise, that is, strictly and unambiguously defined [Lisk79].
' ';*.Formality and precision ia specifications are, therefore, intertwined. Parnas [Pan77a! concedesthat a specification can be precise without being formal but notes that creating one is "very

difficult." By definition, the converse is not true: a formal specification is always precise.

Sometimes added is the stipulation that a formal specification must contain the capability

to demonstrate rigorously the validity of implementation objects derived from it [Cohe83,

Lehm84]. In my view, this overconstrains the definition, however desirable such a capability may

be.

(2) Syntactic vs. Semantic. Wegner (Wegn84] differentiates syntactic and semantic interface

specifications of software components as follows: "Syntactic interfaces specify compile-time invari-

ants that determine how components fit together, while semantic interfaces specify execution-time
invariants that determine what the component computes." A similar concept exists for IC

modules: the syntax (well-formedness) of a composition of modules can be checked statically (i.e.,

without recourse to dynamic analysis or simulation), whereas the semantic integrity of a module



composition requires dynamic verification. Syntactic specifications, therefore, are adequate to

determine the consistency (but not the validity) of a proposed module interconnection. As

Wegner notes,
strong semantic inte'face specifications are intractable in the sense that they do not always exist
and their correctnem cannot always be verified. The trade-offs between the flexibility and
efficiency of very weak interface specifications and the guaranteed integrity of strong interface
specifications need to be better understood.

(9) Non-executable vs. Executable. A specification is called executable if it is possible to create a

machine interpretation of the specification that provides an approximation of external system

behavior IZave841. Because of their precise syntax and semantics, all formal specifications can be

meaningfully processed by a computer [Lisk7]; however, not all formal specifications contain the

kinds of behavioral semantics necessary to permit simulation of system behavior by machine pro-

cessing.

An extreme (and sometimes overconstraining) form of executable specification is a realiza-

tion of the desired design: when questions of specification details arise, one "asks the machine" by

making an experimental query of the existing realization [Broo75].

(4) Black-Box vs. Clear-Box. Earlier, a clear-box (sometimes called structural) specification of a

module interface was characterized as one that prescribed the interface indirectly by describing an

implementation of internal module structure, logic, or circuitry. A black-box (or behavioral)

specification, on the other hand, prescribes a module interface through a description of the

module's externally visible behavior [Zave84J. Somewhat generally, I referred to a black-box

interface specification as an abstract interface epecification, in that for a given black-box

specification more than one implementation (of the type prescribed in a clear-box specification)

could exist.

This distinction is perhaps too clearly drawn. Proponents of clear-box specification might

state that the implementation they produce is not meant to constrain the implementation, but

merely to prescribe its behavior. Indeed, this implementation itself could be abstract, describing

module behavior executably but in terms of implementation-independent substructures jZave84j.

Zave calls a specification that describes module behavior in such a way an operational

specification. In contrast, a functional or input/output specification describes a direct functional

relationship among module inputs and outputs without reference to substructures [Lisk79j. For

this dissertation, an (abstract) operational specification is also a black-box specification, but a so.
9 Vcalled operational specification that prescribes an implementation is neither black-box nor opera-

tional.
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In this dissertation, I will thus not join the debate between proponents of operational and

functional specifications. The crucial issue is that both types can specify interfaces abstractly,

and I contend that such specification, which I call black-box, is superior to its clear-box counter-

part. Furthermore, in the hardware domain much of what passes for operational specification, as

Zave defines it, is in practice clear-box specification.

2.1.4 Module Function; Module Performance.

Definitions. The function of an IC module is its externally visible behavior. The performance of

an IC module is a set of measurements of its function in terms of physical phenomena (e.g. speed,

power, area).

Discussion. The word "functional" is overloaded in specification parlance. In distinction from

the use made of it in the previous section as an opposite to "operational," it can also be used to

differentiate the semantics contained in the specification.

In software, Liskov and Berzins [Lisk79] state that "functional" specifications "describe the

effect of the module on its external environment," whereas "performance" specifications "describe

constraints on the speed and resource utilization of the module." In IC design, however, the effect

of the module on its external environment depends on its performance, so that the line between

functional and performance specifications must be redrawn. Indeed, it is possible to think of a

single function/performance continuum, corresponding to a continuum of abstraction of

specification primitives. I will treat this issue in detail during the discussion of adequacy in sec-

tion 2.2.2.

Other-than-functional specifications are sometimes called constraints. Roman [Roma851, in

a recent taxonomy of software requirements engineering issues, enumerates several constraints

besides performance: interface constraints (assumptions about the environment), operating con-

straints (size, weight, power, etc.), life-cycle constraints (maintainability, enhanceability, portabil-

ity, development time limitations, etc.), economic constraints, and political constraints. For the

purposes of the current VLSI-oriented work, Roman's interface constraints are considered to be

orthogonal to the functional/performance issue; operating constraints are considered together with

performance constraints; and the other three types of constraints can be dealt with only infor-

mally.

".,
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,.1.5 Abstract VLSI Interface Specification.

Definition. An abstract VLSI interface specification is a reduced set of assumptions that a

designer of an adjacent VLSI module would need to make to design, and especially to verify the

correctness of, this adjacent module. This set is reduced in that it excludes assumptions that

have to do with internal module implementation.

21. Requirements for VLSI Design Abstract Interface Specifications.

In this section, I shall enumerate the requirements that an abstract interface specification

must meet in the VLSI design process. Later, I shall examine existing specification methods in

light of these requirements.

2.2.1 Provision of Frame for Verification (Adequacy).

This requirement follows directly from the definition of "specification" developed in section

2.1.3. A description purporting to be a specification must be a specification: it must provide a

frame for both technical and administrative verification. (To the extent that these types of

verification differ, technical verification focuses on technical performance of the product, while

administrative verification examines the product for fulfillment of relevant contractual obliga-

tions.)

Design specifications can be constructed at differing degrees of what I have chosen to call

adequacy. That is, there exists a continuum (Figure ,-4) of refinement of the amount of detail

included in the specification. At the coarsest levels, a specification may be given in general terms,

e.g. "this module is the ALU." Refinement of this specification along the continuum of Figure 2-4

gradually adds detail to the specification, until at some point in the continuum there is an ade-

quate level of detail to guide the implementation. At this point, which is admittedly vaguely

defined, it can be said that the specification is adequate.

Liskov and Berzins [Lisk79] distinguish two types of specifications: functional and perfor-

mance. With respect to these two types of specification, the experiences of software and hardware

engineering differ. In software engineering, functional specifications are of chief importance,

because performance issues are largely orthogonal to function and thus can be abstracted away; if

better performance is needed, one can tune the implementation later or get a faster machine.

.-.



Coarsest Specification

"i I
, Specification 1

Specification 2

I

Specification n

Most Detailed (Complete) Specification

Figure 2-4. Continuum of Specification Refinement.

Two separate continua of refinement (Figure 2-4), one each for function and performance, thus

exist in software specification.

In hardware engineering, however, a well-known adage states: "Circuits must not only work;

they must perform." In hardware design, what is functionally correct under less specific

parametric or performance constraints may cease to be functionally correct under more specific

constraints; thus function and performance are naturally intertwined. Because of this characteris-

tic of hardware engineering, then, in IC design what is called a functional specification can be

interpreted as an early stage, and performance specification as a later stage, of a single

specification refinement continuum. At all levels of refinement the specification must be precise;

the primitives with which it is described, however, may vary in specificity. The adequacy, then,

of an IC design abstract interface specification depends on the specificity of its performance con-

straints relative to the specificity required. If one's concern is merely that the circuit function

correctly at some level of performance, then a less detailed (functional) specification will be ade-

quate. But if one's concern is that the circuit function correctly at an intended level of perfor-

mance, a more refined, more detailed specification will be needed.

4..
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In VLSI design in particular, concern for correct behavior at intended performance levels is

of central importance. Ultimately, then, a VLSI design interface specification must contain per-

formance detail. This requirement implies, because of the inseparability of performance from a

design's geometric and electrical characteristics, that these latter characteristics must also be

included. As a result, a substantial variety of information is required in a VLSI design abstract

interface specification, and the specification technique employed should both (1) provide rich

enough facilities to express this information and (2) express it in terms of the performance levels

required.

Shaw [Shaw84] has recently elaborated on this requirement as follows:

A specification methodology that addresses [properties other than pure functional correctness]
must have two important characteristics. First, it must be possible for the programmer to make
and verify assertions about the properties rather than simply analyzing the program text to derive
exact values or complete specifications. This is analogous to our approach to functional
specifications - we don't attempt to formally derive the mathematical function defined by a pro-
gram; rather, we specify certain properties of the computation that are important and must be
preserved. Further, it is important that the specification methodology avoid adding a new concep-
tual framework for each new class of properties. This implies that mechanisms for dealing with
new programs should be compatible with the mechanisms already used for functional correctness.

.2.2 Spareness.

Parsimony, that is, limiting the number of related expressive mechanisms in a specification

technique, is clearly desirable. It might fruitfully be thought of as an aspect of a more general

economy, which I shall call spareness. Spareness is the property of a specification that implies

that it says only what it needs to say.

As Parnas has noted [Parn72a, Parn77a], what a specification does not contain is nearly as

important as what it does contain. It is vitally important not to clutter the specification 'ith

extraneous requirements: these not only over-constrain the implementer but also slow comprehen.

sion IMeye8bJ. Thus a spare abstract interface specification technique must not only manifest

economy of expression, but it must also identify which details are essential and which are

unnecessary.

I. E.5 Perceived Cost-Effeciteness.

The desirability of spareness is but one illustration that the usefulness of a specification is

strongly related to its intuitive appeal to designers, that is, the degree to which the specification

technique is perecied as cost-effective. Clarity and simplicity, as Liskov and Berzins [Lisk7O]

!m
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have pointed out, contribute significantly to a specification technique's attractiveness. Choosing

familiar representations also aids acceptance [Lisk7g]. Finally, the costs of using the method need

to be reduced as much as feasible: a clumsy or slow user interface is certain to undercut adoption L

of a proposed technique, especially considering that designers have not yet embraced specification

methods per 8e. Baroque and unusable specification methods are all too easy to develop: Liskov

and Zilles [Lisk75J called difficulty in use "the fundamental problem with specifications."

E.E.4 Malleability.

A strong contributirg factor in the perceived cost-effectiveness of a specification is its useful-

ness throughout the design life-cycle. What quality of a specification contributes to such useful-

ness?

A valuable but elusive goal in design is that of getting the specification "correct" the first

4 time through careful axiomatic thinking. Several noted contemporary scientists, such as Dijkstra,

believe that such a goal is achievable [Berg8l, and they may ultimately be proven right. For the

present, however, specifiers do not always seem to be able to foresee the later emergence of

difficulties and even contradictions in the specification constraints they have established at the

outset. If these specification constraints are rigid, backtracking that includes constraint

modification would be impossible.

Perhaps, then, it is unfruitful to visualize specification constraints as being rigid. Instead,

the constraints might better be viewed as variables, albeit with "stiff" coefficients of elasticity.

(Other variables have more pliable coefficients.) I call the degree to which a specification's cc.,,-

straints can be viewed as variables its mctleability, and I contend that malleability enhances the

life-cycle utility of a specification. Malleability is not imprecision; it is the property of a

specification that permits and facilitates precise constraint adjustment as necessary, in the

interest of preserving the usefulness of the specification as a frame for verification throughout the

design life-cycle.

Good examples of malleable specifications are the incremental (prototype-based) [Myer84]

and transformation-based JBalz83, Part83] life-cycle paradigms, as contrasted to the conventional

linear development model. Such methods depend on regular incorporation of feedback into the

specification, which is then used directly to derive refined systems. The appeal of these non-

conventional approaches may indeed be due largely to their increasing the usefuluess of the

4o
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system specification in the design life-cycle.

.1.5 Change Management Support.

Finally, as has been noted in chapter 1, a primary motivation for developing a new VLSI

design interface specification method is to support change management. To do this, an idcal

specification technique should assure the designer that internal changes to a design module that

do not change the specification also do not have effects outside the boundaries of that module.

This requirement thus overlaps the requirements of the preceding sections, especially those for

adequacy and malleability.

1.8 Ezisting VLSI Design Interface Specification Methoda.

No technique fully meeting the five requirements enumerated in the preceding section has

yet been developed. At this point, I will review the important published work that has been done

in developing methods for constructing VLSI design interface specifications. It is important to

note that all the specification methods to be surveyed have a place in the design process; however,

I shall evaluate them, using the criteria of section 2.2, specifically as candidates for interface

specification methods to support change management.

2.8.1 Methods for Informal Specification.

Informal specifications of IC interfaces are most often an ad hoc mixture of prose descrip-

tions and block diagrams, intended to convey the function and/or structure of the design to a

general audience. Procedures for informal specification rarely receive wide disseminalion.

a2.8.1.1 Ezamles.

- Lattin et al. [Latt8lI mention a "200-page document" that served as the specification for the

Intel iAPX-432 design and that, judging from the context, was probably at least partly infor-

mal. Indeed, it is reasonable to surmise that most major chip design projects begin with such

a document.

%'
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- Standard cell system documentation usually includes an informal description of cell interfaces.

Module interfaces in the Stanford Cell Library [Newk83J, for example, are described both in

prose and in a formal mask description that can be simulated to provide more precise interface

data. Informal specifications similarly are included in documentation of those silicon compiler

systems [Gros83a that are based on parameterized standard cells, such as the Concorde Sys-

tem of Seattle Silicon Technology, Inc. JSST84].

2.3.1.1 Strengthi/ Weaonees.

Britton, Parker, and Parnas [Brit8la] identify the strength of informal specifications: they

are easy to review for people not intimately familiar with the technical details of the project.

Since most specifications require approval by persons in this category, Britton, Parker, and Parnas

suggest that software specification methods should accommodate an informal component that

embodies those assumptions critical to the design and that is consistent with the formal portion of

the specification.

Unless they are supplemented by a formal component, however, informal specifications are

inadequate to provide a verification frame in the design of complex systems, for the reasons listed

by Dasgupta JDasg84J:

- The dynamic aspects of the architecture ... are usually specified incompletely. [This is particu-
larly true in IC module interface specification, since the interface is semantically rich, with
functional, electrical, and geometrical components, and an informal specification is usually
truncated for manageability before all these data are included.]

- It is extremely difficult, even in principle, for the design to be validated for correctness without
constructing and testing the physical system.

- The sequence of design decisions and the rationale for them are seldom documented explicitly.
... It is virtually impossible to investigate, manipulate, or alter a design, or evaluate alterna-
tive architectures for performance characteristics, without constructing and testing the physical
system. JHeninger [Heni781 blames this lack of robustness not only on the intractability of in-
formal specifications but also on their frequent failure to include fundamental assumptions, re-
quired subsets, expected changes, and rules for treatment of undesired events.]

The inherent weaknesses of informal specifications as stand-alone system specifications are dis-

cussed in greater length by Meyer [Meye85].

2.8.2 Methods for Syntactic Specification.

Syntactic interface specifications exist for verifying the integrity of a composition of

modules; they are of most value when such verification is complex.

.4°l
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f.S.t.1 Example*.

The best examples of syntactic IC module interface specification are "pin-typing" schemes.

Sigal [Sfg3gal] was among the first to demonstrate such a technique, but his effort was abandoned

because of incompatibility with other existing tools. Noice, Mathews, and Newkirk lNoic82

reported on the benefits of using signal-labeling conventions in the two-phase nMOS clocking dis-

cipline described by Mead and Conway [Mead8O]; Karplus [Karp84J extended their work and pro-

vided a formal basis for it. Some success with a related scheme using a different set of restrictions

has been reported by Poulton [Poul84]. Although he has so far used only manual verification of

the embedded information, his method is compatible with existing design tools and has been

reported to aid design composition significantly in more than one project involving multiple clocks

[Poul85]. Newkirk and Mathews [Newk831 and the designers of the VIVID system [Rose84] have

provided some syntactic pin-typing facilities in their respective design tools; no results analyzing

their usefulness have yet been reported.

2.8.2.1 Strengthof Weakneses.

In the previously-cited quote, Wegner [Wegn84] stated correctly that although syntactic

interface specifications are easier to create, it is usually in verifying semantics that a verification

frame (a specification) is most required. Consequently, purely syntactic IC interface specification

techniques have not yet generated much interest, except in designs, such as Poulton's, of

significant syntactic complexity.

2.S.8 Methods for Non-Executable Specifications.

Because informal interface specifications have already been considered, I shall examine only

formal, non-executable specifications here. There have been two distinct formal, non-executable

approaches, which now appear to be joining in a confluence of thought. The first approach pro-

vides a formal high-level description of both behavior and structure as a starting point for design

synthesis. The second, traditionally less concerned with the specification's role in aiding syn-

thesis, primarily describes module behavior or function with a view toward providing a frame in a

formal proof of design correctness.

.............................................
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Synthesis-directed specification approaches begin with for-al descriptions written in docu-

mentation languages that normally capture both behavior and structure of the intended design.

Many of these languages are called Computer Hardware Description Languages (CHDLs). While

interpreters have been created to render some of these CHDLs executable, in the main their pur-

pose has been documentary, and their role in the specification process has been as an informal

point of reference during design elaboration.

There is a class of synthesis-directed languages in which the role of capturing a starting

point for synthesis so far outweighs the specification role that the languages are rarely referred to

as CHDLs. These might be called "generator source languages," because their role is analogous to

that of software source languages. Descriptions written in such languages (1) usually constitute

an intermediate step between a (perhaps informal) specification and lower-level synthesized

descriptions, and (2) serve as input to generators that produce executable design descriptions.

Here are included primarily input languages for automated synthesis aids, such as chip assemblers

[Mudg8l, Katz83, Katz84] and silicon compilers fGray82, Ance83, Lipt83, SST84].

Proof-directed specification approaches have undergone a change of direction. They began

with non-executable specifications, such as the non-procedural functional language used by

Wagner in 1977 and cited by Barrow jBarr84j; such specifications were reconciled with synthesized

designs using manual proof techniques. Lately, however, with the renewed interest in artificial

intelligence, more interest has been shown in creating proof-directed specifications that can be

executed by inference engines to prove design correctness automatically; thus most contemporary

proof-directed specifications are executable.

A natural question, raised by Cohen at the 1983 International Coni'erence on VLSI [Cohe83],

is whether a single interface specification technique could serve both synthesis and verification

needs. That is, can a single technique capture sufficiently the behavior and structure of the

desired design to guide the synthesis effort, while at the same time being precise enough to sup-

port formal proof of design correctness?

2.8.8.1 Ezamples.

Since Dallen [Da1831, Dasgupta [Dasg84], and Nash [Nash84] provide excellent surveys of

CHDLs, it suffices to note here that CHDLs can be grouped into three classes, the block languages

(e.g. PMS [Siew82]), the register-transfer (R-T) languages (e.g., CDL [Chu74], DDL [Diet74,

AA.L



Maru85I, ISP [Siew82], ISPS IBarbg2I), and the graphical languages (e.g., Petri nets [Pete77],

Patois (DaI831, Interface-Nets JMoln85j).

CHDLs have proliferated furiously [Wern84]. One current trend is toward a consensus

CHDL; an international group has been working for more than ten years on such a language,

CONLAN IPilo5l. Another current trend seems to be toward extensible omnibus CHDLs that

can be used to describe in a single language function, structure, and layout (e.g., the VHSIC

P!ardware Description Language (VHDL) currently under development by Intermetrics for the U.S.

Department of Defense [Dewe84, Shah851 and GTE Laboratories' Zeus !Lieb85). Finally, fine

results have been obtained using programming languages as CHDLs, such as the use by Blaauw of

APL for this purpose [Blaa76, Blaa83j.

Barrow's VERIFY system [Barr84j, although not properly a member of this section because

it produces executable specifications, typifies the state of the art in proof-directed specification

approaches. He begins with a set of primitive modules, represented as finite-state machines with

known black-box function. Next, he composes these modules into the structure of the target

design. Finally, he uses a PROLOG-based interpreter to prove that the mathematical composi-

tion of the functions making up the interconnection is the function of the target design.

Can a single specification support both synthesis and verification? Frankel and Smoliar

[Fran7g], Rowson [Rows80, Gordon [Gord8lJ, Cardelli and Plotkin [Card8l1, Hafer and Parker

(Hafe83I, and Sheeran [Shee84] have all suggested the feasibility of specifications that apply

mathematical compositional systems to VLSI design components. Subrahmanyam [Subr83] has

recently reported on the development of a theoretically precise specification language designed to

serve as input to a silicon compiler, thereby showing a fortiori that it can serve to guide manual

design synthesis.

2.8.S.2 Strengthsf Weaknesses.

Formal specification methods have substantial potential for dealing with the complexity lev-

els inherent in VLSI design, in that they can capitalize on their foundations in discrete mathemat-

ics and the theory of computation. Nevertheless, the formalism in such methods is now largely

foreign to programmers and managers, even to those with engineering backgrounds. If these

methods could be interpreted in automated tools, the retraining necessitated by their introduction

would be lessened, although certainly not eliminated. But methods not optimized for the use of
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such tools, such as non-executable formal specifications (which now usually require a manual

interface), will be slow to be accepted.

On the other hand, methods that are familiar, such as clear-box specification using CHDLs,

will be abandoned reluctantly, and the use of such techniques is currently widespread [Dasg84,

Evan85]. CHDLs for black-box specification, whose primitives are abstract, do not have the same

intuitive appeal, however. Because no CHDL has emerged as a standard after many years

[Wern84], a needed breakthrough in CHDL technology may still be lacking.

2.8.4 Methods for Clear-Boz Spec~ficotion.

Since non-executable specifications were addressed in the preceding section, only executable

clear-box specifications will be covered here.

Clear-box VLSI specification methods are an evolution of specification techniques used at

lesser degrees of integration. The primary characteristic of such clear-box specificatiens is that

they prescribe interfaces by inference, rather than directly.

2.3.4.1 Examples.

Executable clear-box specifications can be classified according to the level of abstraction of

the primitives appearing in the clear box. The executable clear-box CHDL specifications have the

highest-level primitives, such as registers. Next, generally for smaller modules, are found the ubi-

quitous logic diagrams and their simulators. These are especially prevalent in the composition of

systems consisting of SSI and MSI circuits. Finally, in cases in which a replacement for an exist-

ing module is being developed, circuit- and mask-level simulators are available to enable the exist-

ing module to act as the specification. Each technique is widely used, and there are many

languages and simulators for this purpose.

Excellent results have been reported from the use of a clear-box specification system by Dus-
sault, Liaw, and Tong at AT&T Bell Laboratories IMurp83, Duss841. This tool, called the Func-

tional Design System (FDS), enables designers to construct circuits hierarchically using custom-

designed primitves tailored from a menu of options. Designers can wor,, with black-box des.rip-

tions of each primitive written in a special executable language. FDS is currently being used in a

production environment.

-. :x < &. v--.'*.-
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.. 4.1 Sirengthel Weaknesseo.

Clear-box specifications, like informal specifications, have the advantage of being familiar to

designers. They also provide a path to a feasible implementation, whereas bl3ck-box

specifications can mask fatal implementation difficulties [Moln85]. From a VLSI design point of

view, however, clear-box specifications also have several disadvantages, as section 1.3.1.1 states.

The most serious is that they confuse architecture (the external view) with implementation,

elevating low-level concerns too early in the design process to achieve good design partitioning

and unity. Furthermore, as Parnas notes [Parn77a], it becomes "very hard for both the reader

and writer of specifications to distinguish requirements from peculiarities of the sample implemen-

tation." Thus clear-box specifications may constrain the implementation unnecessarily.

Zave IZave84j lists further difficulties. Clear-box specifications are complex; often not tak-

ing advantage of abstraction, they scale up poorly and are hence reduced in value at VLSI levels

of integration. Furthermore, because of this level of detail, they are time-consuming to construct

and analyze. Finally, Dallen [Da183 contends that clear-box specifications do not naturally aid

the synthesis process in hierarchical design because they are usually tied to fixed levels of abstrac-

tion.

2.8.5 Methods for Formal, Semantic, Ezecutable, Black-Boz Specification.

Because critical disadvantages exist with each method of VLSI design interface specification

discussed thus far, examining the intersection of their complements provides the best hope for

finding techniques meeting the five requirements of section 2.2.

Functional specification using high-level programming languages or special-purpose

specification languages is the primary technique that appears in this intersection. Typically, a

black-box interface specification is constructed for the module under design, a high-level language

is used to describe its behavior, and the simulated output is compared to that obtained by simu-

lating lower-level representations of the design. Evaluation of the specification through simula-

*: tion, rather than through analysis or prototyping, is almost always used because of the intractable
,.

complexity of the specification at VLSI levels of integration. Special-purpose specification

languages have arisen because programming languages can be cumbersome to use for this purpose:

they do not handle timing in a natural way, and it is difficult to make specifications written in
them grow with the design life-cycle.
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,,. .. f.S.5.1 Ezample#.

Many designers use languages such as APL, Algol, BLISS, C, and Pascal for functional sim%.-

lation of system specifications [Dal83, Evan85]. Lattin et at. [Latt8IJ used a high-level language,

SIMULA, directly as the specification medium for the Intel iAPX-432 chip. That is, rather than

serving as a simulator for a separate specification, this simulator itself filled the role of the frame

for design verification; questions were resolved by "asking the machine." Tham, Willoner, and

Wimp [Tham84I of Intel updated this technique in their recent use of a MAINSAIL frame; a simi-

lar approach was also used by the designers of the Hewlett-Packard FOCUS chip ICane83J. The

MetaLogiv, Inc., MetaSyr silicon compiler [Sisk82] accepts as input a LISP-like executable

description of the function to be implemented [Wall84]. Control Data Corporation's MIDAS sys-

tem specifies designs using a programming language enhanced with timing semantics [Evan85].

Finally, Suzuki has used Concurrent Prolog to specify the function of the Dorado computer

ISuzu851.

Parker and Wallace [Park81] identify the following milestones in the history of special-

purpose black-box interface specification languages:

- Bell and Newell's port sem'antics JBell711;

- Curtis's Interface Description Language [Curtis], a multi-level extension of PMS and ISP

developed circa 1974-1975;

- Vissers's formal description2 of state diagrams using APL enhanced with timing constructs

[Viss76; and

- Marino's proposed MPLID [Mari78], a language for specification of hierarchical module inter-

faces.

Parker and Wallace's own language, SLIDE (Structured Language for Interface Description and

Evaluation), synthesizes these developments into an executable black-box register-transfer

language. SLIDE's major contributions are this synthesis of trends and its elegant facility for

describing module interconnections as communicating asynchronous concurrent Processes.

2 See adho [Bl&a761

C-I _ .. . . 2. . ,t .. 2.
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Pin names/attributes Parameters

( K/unspecified sh'pe=6
TI ( L/input lineagefpure-enh.

(M/unspecified

(N/unspecified sbape=3
T2 ( P/input lineage=pure-enh.

( Q/unspecified

TI/T2 ( K/unspecified shape=2
composed ( L/input lineage=pure-enh.

in ( P/input
parallel ( M/unspecified

Figure 2-5. Bain's External Outlines [Bain84].

Several other interesting approaches have recently been taken to the development of execut-

able special-purpose languages for black-box VLSI design interface specification. For example,

Bain [Bain84] has incorporated into his CHECK-ME design methodology verification system a

technique, based on Penfield's [Penf721 "wiring operators," which completely characterizes a cir-

cuit using an "external outline" consisting of a list of terminal names, a limited set of

input/output attributes, an electrical drive factor based on the shape of the internal transistors,

and a bread characterization of the implementation strategy that he calls "lineage" (Figure 2-5).

While it requires extension to achieve semantic adequacy at greater levels of specification

refinement, Bain's method is encouraging, for it illustrates the simplicity that can be achieved in

abstract IC circuit interface specifications if an appropriate set of abstractions is identified.

Tsai and Achugbue [Tsai83J provide in their BURLAP system an idea of what a timing-level

extension of Bain's external outline might look like. They specify the abstract interface by a

"multi-cell module" (MCM) description consisting of the components listed in Figure 2-6. Figure

2-7 shows the contents of a t, i cal BURLAP specification.

The hierarchy exploited by Bain and by Tsai and Achugbue has been formally analyzed by

Chen and Mead [Chen831. Using mathematical methods, they define a semantic hierarchy of

specification, and of the ensuing verification by simulation, similar to that depicted in Figure 2-4.

In this way, they formally partition the design process and suggest that a uniform representation

can be used to provide interface descriptions as simulator input at all levels. Individual design

- ' -. . - - - . . ,. -/ .... , -%-,.--,, .. -- , -.. . . ..-. ... , - --. . -. .. . . .- ...- . .-. : .. , .. . .

: ' ' _: -. t,' -! - '- " " -
, ' .
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1/0 Interface - indicates the pin names and the pin types
at the "bla-k box" level.

Behavioral - description of the block function, either
in a p~ocedure or Boolean equations
(truth table).

Structural description of the interconnection of the
low-level primitive elemeyts into which the
MCM can be expanded [n-t used in black-box
specification].

Physical - description of the layout and size of the MCM.
Electrical - delay and timing information used by logic

simulator and timing verifier.

Figure 2-6. Components of a BURLAP Interface Specification
ITsai 83J.

Begin-Cell
Name: RAM32x8
Class: StorageElement

Physical
CellWidth: 40
CellHeight: 40
PinCount: 23

Electrical
CellCurrent: 35mA
PowerDissipation: 150mW
Delay: 60ns

Pins
PinName: AO

Pin_Type: IN
Capacitance: 0.lpf
Equivalent_Port: 0,38
Layer: Polysilicon

PinName: 0
PinType: OUT
Capacitance: 0. 15pf
EquivalentPort: 40,38
Layer: Polysilicon

[Pin-Name:
Power-Bus/Clock

VSSWidth: 3
VSSPort: 38,0

End_Cell

Figure 2-7. A BURLAP Specification of a Static RAM
[Tsai83].

modules, in their work, are conceived as separately-compilable MAINSAIL descriptions of finite-

state machines, encapsulating design details at appropriate levels of semantic abstraction. To

J=.
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date, however, their work has centered on creating the formal bases necessary to prove correct-

ness, rather than on developing an abstract interface specification technique tractable at VLSI lev-

els of integration.

Another special-purpose specification language, previously cited, that makes use of

separately-compilable modules that represent finite-state machines is included in Barrow's VER-

IFY system [Barr84]. VERIFY also uses the hierarchical approach recommended by Cben and

Mead to predict the functional behavior of an interconnection of these modules from a description

of the behavior of each. But, instead of using the simulation customary in the verification pro-

cess, VERIFY uses a PROLOG-based interpreter to compare the predicted behavior with a set of

equations that specify the system's behavior. To date, VERIFY has been tested on functional

specifications only, but its approach to verification is encouraging, in that it can be replicated

hierarchically to scale up to VLSI design levels without the need for specifications to be re-

executed at each level of refinement. A sample VERIFY specification is shown in Figure 2-8.

The irnherent complexity of VLSI-level system specifications has hindered not only

verification but also the development of silicon compilers, the hardware design counterpart of the

transformational implementation of operational specifications mentioned by Zave [Zave84].

Subrtamanyam jSubr83 has addressed both problems simultaneously in his specification formal-

ism called BehaviorExpressions, an algebraic specification language designed also to serve as input

to a high-level silicon compiler. Figure 2-9 gives an example of a specification expressed in this

lang~iage.

Subrahmanyam's work addresses the need for semantic adequacy at each of the functional,

geometric, and electrical levels mentioned earlier; it also includes paradigms for instructing the

silicon compiler to consider performance and cost data in performing its transformations. His

research plan is comprehensive and ambitious, and its results could prove significant indeed.

2.8.5.2 Strengths/ Weaknesses.

Functional interface specification with abstract high-level languages has achieved the most

promising results of any technique discussed. Specification refinement, however, requires the

eventual representation of dense semantics (particularly geometric and electrical information, con-

currency, and parallelism). Although it is possible to express such semantics and their complex

data types in conventional programming languages, not many designers are now familiar with the

...... ..... ..........'. ........, ...,...... ... ................. -,.......,...,-,- -. -. "..-.-: -. . .. '.-.".-..
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% Definition of module type Register
Module: reg
Ports:

in (input, integer)
out (output, integer)

State Variables:
contents (integer)

Output Equations:
out := contents

State Equations:
contents := in

Figure 2-8. A Module Specification in VERIFY lBarr84].

StackChip(s) -
INITIALIZE. StackChip (NEWSTACK)
+

INSERT x. StackChip (PUSH(s,x))
+

DELETE TOP(s). StackChip (POP(s));

where Stack is an abstract data type with predefined syntax and semantics; INITIALIZE,
INSERT, and DELETE are global ports (two input and one output, respectively); s is a parameter
that represents an instance of the type Stack; and NEWSTACK, PUSH, and POP are operations
defined for the type Stack.

Figure 2-9. Specification Using BehaviorExpressions
[Subr83].

disciplined programming style that such expression requires. Consequently, these languages are

now more frequently used for functional specification alone.

Special-purpose languages possess more powerful primitives for expressing design semantics,

but their degrees of perceived cost-effectiveness and malleability vary, particularly in the

representation of very-large-scale designs. And, as Evanczuk notes, a special-purpose language

has a smaller user community; he believes that the user momentum, availability, and portability

of general-purpose programming languages makes techniques based on them more likely to

succeed [Evan85].

-I7
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1.4 Parnao's Techniques for Abstract Interface Specification.

Parnas's approach to attacking the complexity issues of the "software crisis" has been one

of "divide and conquer." Few others have elucidated as well as he the issues involved in dividing

the software design task. A brief review of his treatment of these issues is in order.

2.4.1 State Machines.

In an early paper [Parn72a, Parnas set out the module as his software building block and

described how it was to be specified. His was a black-box specification, and his model of the

black-box contents a state machine. His choice of this formal but familiar model is typical of his

philosophy: understanding is the goal, and understanding is aided by simplification, without

compromising precision, wherever possible.

Interaction with Parnas's module takes place entirely through what he later called access

functions (or access programs). These functions make up a major part of a module's specification

and can be invoked by other modules either: (1) (effect acces. function) to change the state of the

module by providing an input value; or (2) (value access function) to read out the state of the

module. By restricting access functions to one of these two types, the opportunity for prescrip-

tion of an intended implementation (which would cause the specification to become clear-box) is

reduced [Bart77].

2.4. Traces.

Parnas believed strongly [Parn72a] that specifications should be minimi:td, in the sense that

only the information required for the specification should be provided "and nothir-g more." He

felt that a chief source of specification failure was overprescription or redundancy, a view that

was then controversial but that has now been generally accepted [Meye85. With Bartussek

[Bart77], Parnas became concerned that functions in the specification could potentially prescribe

an implementation. To be sure, the definitions of such functions were, by fiat, unavailable out-

side the module being specified (leading to their being called "hidden functions" in the literature).

But their existence bothered Bartussek and Parnas, especially because of the suggestion (see sec-

tion 2.1.3) that modules could be specified "by giving a program whose behavior would be accept-

able and asking that the program produced be 'equivalent'." Such "equivalent functions," they

felt, provided superfluous information [Parn75a[.
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Syntax:
PUSH: <integer> X <stack> - <stack>
POP: <stack> - <stack>
TOP: <stack> - <integer>
DEPTH: <stack> - <integer>

Semantics:
A. Legality:

(1) &(T) => &(T.PUSH(a))
(2) &(T.TOP) = &(T.POP)

B. Equivalence:
(3) T.DEPTH = T
(4) T.PUSH(a).POP T
(5) &(T.TOP) => T.TOP T

C. Values:
(6) &(T) => V(T.PUSH(a).TOP) - a
(7) &(T) => V(T.PUSH(a).DEPTH) 1 + V(T.DEPTH)
(8) V(DEPTH) - 0

Figure 2-10. Specification Using Traces of
a Stack for Integer Values [Bart77].

Notation:
Dot (.) is the functional composition operator.
&(T) is TRUE if calling the functions in the sequence specified in the trace with the

arguments given in the trace when the module is in its initial state will not result in an abnormal
exit.

V(T) is a value access function that returns information about the module state.

The result of Bartussek's and Parnas's work was an "axiomatic" specification approach

called "traces." It is called axiomatic [Lisk7?9 because a specification using traces makes state-

ments (axioms) only about the effects of function calls; it contains no reference to any internal

data structure. Figure 2-10 gives an example of such a specification. Specifications using the

trace approach are termed complete (i.e., they completely determine externally visible module

behavior) if one can determine from the specification the value returned by every trace (sequence

of function calls) ending with a value access function and not causing an abnormal exit. The use
of traces for IC specification has been reported by Rem, van de Snepscheut, and Udding [Rem83].

.4.5 The Software Cost Reduction (SCR) Project.

Parnas, sensitive to the frequently-made criticism (see section 1.3.1.2) that claims made for

new software engineering methods are usually poorly supported, undertook a major projr'-t begin-

ning in the late 1970's to test his and other software engineering principles in a real-world

w.b
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environment. This project, £ponsored by the Office of Naval Research, is structured arodnd the

re-engineering of obsolete avionics software for the Navy A-7 aircraft. Thus it provides a point of

comparison for the efficacy of the new software engineering methods.

Fnname Parm_type Parm-info Undesired- evento

+EQ+ pl:real;l !!source!! %%constant dest'n%%
+NEQ+ p2:real;l !!source!!
+GT+ p3:boolean;O !+destination+!
+GEQ+ p4:real;I !!user threshold!!
+LT+
+LEQ+

+ADD+ pl:real;l !!source!! %%constant dest'n%%
+MUL+ p2:real;l !!source!! %range exceeded%/
+SUB+ p3:real;O !+destination+!

Program Effects
+ADD+ p3 = pl + p2
+EQ+ p3 = (pl* p2)
+GEQ+ p3 = (pl *p2)

OR (p1 - p2
is positive)

* [This equality is precisely defined in a text footnote]

Figure 2-11. An Access Program Table
for Specifying Operations on Real Entities [Clem841.

Notation:
+name+ indicates that name is an access function.
!!name!! indicates that name is a term defined elsewhere in the specification.
!+name+! indicates (here) that name is a value produced by an access function.
%namev indicates that name is an undesired event that may not be detected until run-

time. Double percent signs indicate an undesired event that will be detected at system
generation-time.

Except for access functions, each name is defined in a dictionary contained elsewhere in the
specification.

"N , "-i*"h"t = ? 4
' "
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One product of the SCR Project has been an abstract interface specification method

[Parn77b] that evolves traces (in recognition of their frequently-unworkable complexity) by relax-

ing the restriction against equivalent functions. The SCR specification [Heni78, Brit8la] consists

of two partially redundant interface descriptions:

An assumption list, an English-language statement of assumptions implicit in the functional

specifications. It contains both basic assumptions underlying module construction and

assumptions about "undesired events" (what is to occur in each foreseen incorrect or error

situation). The assumption list makes it easier to identify invalid assumptions and is reviewed

by both programmers and non-programmers.

Formal functional specifications of programming constructs embodying the assumptions.

These can be used directly in user programs. They, in turn, consist of access functions and

events, i.e., signals from a module to other modules indicating the occurrence of some state

change within the first module. Events are "reported via access programs that do not return

until the specified conditions hold" [Clem84]. Access functions syntax and semantics are

presented in an access program table (Figure 2-11).

The assumption list, access program table, and the dictionaries defining the terms and data types

used in each are therefore the primary components of an SCR specification.

The SCR specification method has also been employed in other projects (see, e.g., [Hest81])

and has been the subject of several years of both theoretical and practical research. Its chief

benefits have been found to be the facilitation of a structuring set of system documentation and

the ready implementation of information biding [Brit831.

2.5 Summary.

Parnas's techniques for abstract interface specification have considerable potential for exten-

sion to the VLSI design domain. Like the other techniques discussed in section 2.3.5, they possess

the desirable characteristics of being formal, semantic, executable, and black-box. But their chief

merit lies in their unusual capability for implementing a precise separation of concerns (informa-

tion hiding), not only among modules but also vertically along the hierarchy of specification

refinement depicted in Figure 2-4. This precision, coupled with Parnas's concern for spareness,

suggests that these techniques can serve as a starting point in the development of an abstract

interface specification method for VLSI designs that meets the five criteria of section 2.2.



CHAPTER 3

AN ABSTRACT INTERFACE SPECIFICATION APPROACH

FOR VLSI DESIGNS

In the preceding chapter, I have examined related contemporary work in the specification of

abstract interfaces for VLSI designs and have pointed out the shortcomings of existing VLSI

design interface specification methods. This chapter reports on a new approach to such

specification that addresses some of these shortcomings, presenting the approach by describing a

method that uses it. Chapter 4 contains an evaluation of the method's utility and effectiveness,

and chapter 5 provides conclusions and suggestions for future research.

Chapter 3 is organized as follows. I begin by describing an IC module abstract interface

specification method, an extension of Parnas's interface specification techniques to the domain of

VLSI design. The second section provides a detailed example of how the new method can be used

to specify the interface of an IC module. Next, I show how the behavior of compositions of such

specifications can be predicted using Communicating Sequential Processes [Hoar78]. A final see-

tion focuses on simnplifications to the method that can be obtained by exploiting certain charac-

teristics of the VLSI design process.

3.1 Overview and Description of the Approach.

As has been seen, a critical purpose of a VLSI design interface specification is to serve as a

frame for subsequent design verification. In attempting to develop a specification method that

fulfills this purpose. however, one encounters contradictory constraints. On the one hand, it is

desirable to construct the specification early in the design process, to capture high-level design

concerns and to guide subsequent design. However, in practice even the most top-down design

turns up subtle contradictions among the constraints, requiring backtracking. What is needed,

and what I propose, is an interface specification approach that can start by capturing high-level

concerns but then can be refined into a more particular specification as further information

becomes available over the course of the design. Such a specification fulfills the objectives (sec-

tion 2.2) of adequacy and malleability; it can serve as a verification frame throughout the design

life-cycle, because it can "grow" with the design.

*.:
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Another objective addressed in this research has been the perceived cost-effectiveness of

interface specification at VLSI complexity levels. As has been stated, clear-box specification

methods do not scale well to VLSI levels because their complexity must increase directly with the

number of components in the circuit. Several black-box techniques have been proposed, but few

include abstraction mechanisms that effectively reduce complexity by crisp partitioning of con-

cerns. In the approach I propose, precise partitioning of design function is achievable, and com-

plexity can be further reduced by partitioning timing from function. Additionally, the proposed

partitioning mechanisms can be used for geometric as well as for functional/electrical information,

enhancing the approach's spareness and cost-effectiveness.

Finally, the proposed approach includes techniques that support the objective of change

management by precisely quantifying the concept of specification adherence. Such techniques

permit design maintainers to measure the degree to which a candidate replacement module meets

its specification and thus to predict how much change, if any, will be introduced beyond the

module boundary by its inclusion in the design. If such techniques exist, they have not before

been applied to change management in VLSI design.

The following paragraphs provide an overview of the proposed approach. In general, this

approach extends Parnas's abstract interface specification techniques for software, providing

specification refinement and complexity management in a hierarchy of virtual machines. A

specification language is not part of the proposal, and the notation and syntactic constructs pro-

vided are not purported to be superior. Instead, effort has been focused on identifying and study-

ing the issues involved in specifying abstract interfaces for VLSI designs. The proposed approach,

therefore, is ai. attempt to address these issues generically, and the techniques proposed herein

represent a class of abstract interface specification methods.

5.1.1 Model.

The proposed abstract interface specification model is a simple "black box," consisting of an

abstract model of a state (Figure 3-1). The state consists of a finite set of entities called state

variables and is accessed through a distinguished subset of those variables called pins; state vari-

ables that are not pins are called internal. Data enter and leave the module, via the pins, in sig-

n -I variables. This model corresponds, of course, to the state machine model used by Parnas

IParn72a, Bartussek [Bart77], Barrow [Barr841, and others ILisk75I in the treatment of abstract

data types in software, where by "abstract data type" is meant a set of objects together with a

if . . . . . .... . . . . . . . . . . . . . . . . . .. if



40

P1 P2

P7 P3
StateY:):P 6 P 4

P 5

Figure 34. Basic Specification Model.
(Pi Pin i, i ..,7)

.~

set of operations on those objects.

8.1.' Data Typing.

Indeed, each pin and internal state variable in the model depicted in Figure 3-1 is a particu-

lar instance of a single generic abstract data type, called here the generic state type. The objects

in the generic state type are signals; the operations on the signals vary, but typically include

transmission, inversion, selection, and so on. The generic state type is generic because its particu-

larizations depend on the specification of values for semantic and syntactic attributes, which are

parameters used in the definition of type operations (semantic attributes) and in the definition of

legal type usage from outside the module (syntactic attributes). Pins and internal state differ,

therefore, in that internal state variables possess no syntactic attributes; this is their only

difference.

Since the pins and internal module state are the only objects in this model, it is in the

definition of the generic state type that the level of the specification is determined. A

specification whose generic state type has simpler syntax or semantics (such as, for example,

"signal-type == Boolean") is a high-level specification, whereas a specification whose generic state

type has more complex syntax or semantics (such as "signal-type = vector," where the vector

%'--.
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consists of a Boolean functional value plus validity and signal strength values) is a lower-level

specification. The dilemma of contradictory constraints (alluded to earlier) here confronts those

who would construct specification methods. What kinds of syntax and semantics uhould be

included in the generic state type? With too much detail, the specification cannot be constructed

until after it is needed in the design process; with too little, the specification becomes rapidly

overtaken by emerging information gathered from lower-level design.

•. f.1 Data Type Evolution.

The answer, I believe, is not to limit an interface specification to any one level of data typ-

ing, but instead to evolve the specification generic state type to increasing levels of detail over the

course of the design. In this interpretation, a pin or internal state variable is assigned a high-level

type early in the specification process and then, as the design process continues, the generic state

type is made more complex so that specification syntax and semantics are strengthened in a

natural and necessary way. I call this evolution of specifications by data type particularization

specification refinement (see section 2.2.2, especially Figure 2-4).

Let us illustrate specification refinement by continuation of the earlier example. Early in

the specification process a signal might be assigned the type "Boolean," a type that is clearly a

high-level abstraction of the functional and electrical characteristics of its signal. Later, without

sacrificing the earlier characterization, the Boolean type for this signal might be extended into a

type that consists of four bits of information. One of these is the earlier Boolean type, but a

second bit might describe the first bit's validity (i.e., "11" might be a valid "one," whereas "10"

might represent an indeterminate state) and the remaining two bits might describe the strength of

the signal described by the first two.

It is important (indeed essential) to this development that the particularization of these data

types represent an evolution (and not a revolution). Frequently, when high-level specifications are

found to be lacking in essential semantic information, they are discarded and a new specification

is developed. However, this poses the problem of reconciling the new specification with the old

one, a manual (hence error-prone) process at best. It is much better to evolve the higher-level

specification into the lower-level one and thus to avoid the reconciliation problem. As has been

stated earlier, such an evolutionary specification is integrated into the design life-cycle. This

benefit becomes even more apparent when it is noted that an evolutionary approach makes it pos-

sible to compose modules at a high level of specification with modules at a lower level and still

-..- -..- -.
t

...'.'- ' ..: ? ...' : . .-, .. .... >- ... ,..:... .:. . .- .- ...... .... . ,.- .. . - -,... ..-*- .-. ,.,. " .\, . - -



42

have the composition be meaningful. Such mixed-level specification can aid significantly in an

incremental design or redesign effort.

The concept of evolution is made more precise in the following

Definition.' Let <A, OA> and <B, OB> be data types, in which the first component of the

ordered pair is a set of objects and the second is a set of operations on those objects. Then

<B, OB> is an evolutionary particularization (or evolutionary refinement) of <A, OA> iff there

are two mappings 0: A-B and 0,: OA-.OB such that for all o e OA and for all a £ A

00o)((a)) O{o(a)).

This definition is illustrated in Figure 3-2.

A familiar example of an evolutionary refinement is the cummonly-understood refinement of

the data type "integer" into the data type "real." Real operations on integers do not give results

inconsistent with those of counterpart integer operations on integers.

3.1.2.2 Data Type Dimenuionality.

Whereas software interfaces are usually characterized in the single dimension of function, IC

interfaces traditionally are recognized to contain information in three dimensions: the functional,

geometrical, and electrical. These axes do not seem to be orthogonal; instead, an IC module's

electrical information can be considered a refinement of its functional information, and so the

functional and electrical axes can be collapsed together. Therefore, pins and state variables could

Data Type

<B, OB>: O(a) -. *o)(O(a)) O(o(a))t I
<A, OA>: a -. ola)

Figure 3-2. Evolutionary Data Type Refinement.

This d -*finition extends the refnement concept developed by the IBM Federal Systems Division '11BM82, Witt85l
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be characterized by data types with functional/electrical and geometric components.

However, this traditional characterization leads to unnecessary complexity; an alternate

characterization reduces complexity by allowing more precise partitioning of concerns. Recall

that dynamic verification is required only for module semantics and that static checking suffices

for module syntax. It happens that much of the geometric information in a design can be

classified as syntactic, and much of the functional/electrical information is semantic. (This

correspondence is not complete: designs possess semantic geometric information (e.g., current den-

sity) and syntactic functional/electrical information (e.g., whether a signal is used for input or

output)). But, recognizing that the purpose of a specification is to aid in verification, it is more

efficient to partition specification elements along syntactic and semantic axes than along

functional/electrical and geometric axes. Consequently, in this method generic state types exist

at discrete levels of semantic and syntactic complexity, and the particular specification state type,

hence the level of the specification, is fixed by a pair

<semanticjevel, syntactic-level>.

Here are some well-known examples of semantic and syntactic levels:

a. Semantic. At lesser levels of specification refinement, generic state types have semantics on the

functional end of the functional/electrical spectrum. Functional/electrical values here are typ-

ically drawn from a finite set, of size two (Boolean signal levels), three (Boolean with the

indeterminate signal level often characterized as "X," or more (e.g., twelve, obtained by multi-
plying three with a set of four signal strength values, such as floating strength, gate-driven

strength, steered strength, and unknown strength). Note that the three-value type is an ,volu-

tionary refinement of the two-value type, and the twelve an evolutionary refinement of both.

Further on, one typically requires generic state types with performance semantics, containing

signal types consisting of vectors of values that specify signals in tcrms frst of voltage levels

and then of capacitive and resistive drive, current levels, power density and consumption, and

soon.

3"
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b. Syntactic. Here, in evolutionary order, are three sample syntactic types that might be used in

pin specification:

i. An "unspecified" syntactic type that imposes no constraint whatsoever on pin placement

along the module periphery.

ii. An "order-specified" syntactic type that constrains a pin to a given porition in an order-

ing of the pin set around the periphery of the module.

iii. A "location-specified" syntactic type that constrains a pin to a given geometric window

on the boundary of the module.

8.1.8 Access Functions and Specification Refinement.

Once again extending the techniques of Parnas (section 2.4), 1 characterize each module pin

by associating with it an access function. Such access functions can be of one of two types: value

or effect [Clem841. Value access functions are used to obtain a value on a pin; effect access fune-

_. tions are used to set internal state of the module using the value on a pin. I contend that VLSI

" "modules can be fully specified using such access functions, and that such a specification permits

* -' efficient change management over the course of the VLSI design process.

The following definitions formalize those of section 2.4 and extend them into the IC design

domain:

Definitions. Let an IC module have a set S of internal states, and let R be a set of input or out-

put signal values. Then a value access function is a function

v: S R,

and an effect access function is a function

w: S X R -. S.

From these definitions, the notion of (semantic) specification refinement can now be formal-

ized. (A similar formalism can be drawn for syntactic refinement.) Let V and W be the sets of

value and effect access functions associated with the pins of a given module. Let us first identify,

for each (value access) function v, in V, a corresponding signal range r, , such that

v:S -* ri , i = 1, 2 ... , card(V).

Similarly, for each (effect access) function w, in W, let us identify a corresponding signal domain

di , such that

w: S X d,- S, i 1, 2. card(W).
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These signal range and domain sets encompass the spectra of values that pin signals can atain.

Observe, therefore, that the locus of specification refinement is in the signal range and

domain sets r, and di and in the state set S. By our previous discussion of state variable seman-

tics, for a given i each element of r, , dl , or S may be seen to be a vector in SE, where SE is a set

of semantic values. Then (semantic) specification refinement is the redefinition (by enlargement)

of the sets r, , , and/or S, for any of the access functions, and/or for the state set, which make

up the specification.

An example may help. Suppose, for pin I in a given module, SE, - {0,1). This description

corresponds to pure behavioral simulation using two-valued logic. If one wished to refine the

specification to three-valued logic, he would represent this refinement as a redefinition of SE to

to,.X}.

As another example, a module's internal state might consist of vectors in

{strong 0, strong 1, weak 0, weak 1).

A specification refinement might redefine this set to

{floating, unknown, steered 0, steered 1, gate-driven 0, gate-driven 1).

8.1. Sch'duling.

flow should scheduling be handled by this specification method? This important question

can K addressed in at lea-st two ways. A first way is to add a separate temporal dimension to the

generic state type semantics, so that pins and internal state variables could have scheduling

semantics in addition to functional/electrical (and possibly geometric) semantics. This could lead,

for example, to a state type data structure consisting of a Boo!an signal level, a signal strength.

and a clock phase during which the signal is active. Bear in mind, however, that we have been

seeking to control specification complexity by precisely separating concerns. Adding a temporal

dimension to data type semantics detracts from this complexity control objective by mix i g two

potentially separable kinds of information, i.e. functional/electrical and scheduling semantics.

Indeed, from the viewpoint of local (module) functional/electrical concerns, clocked signals are

not semantically different from unclocked signals: scheduling information, if any, is external (glo-

bal). Including global in.ormation in a module interface specification violates information hiding

by including knowledge of the module's context.

0o%
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A different, albeit less conventional, way to handle scheduling is to treat scheduled signals

semantically the same as unscheduled signals and to add scheduling information instead to the

syntactic portion of the specification. Because clock signals, for example, change the state of a

module just as other signals do, one can define access functions corresponding to clock inputs and

outputs just as for other pins. Scheduling itself then becomes a global concern and, as such, is

dealt with syntactically at the system integration level. This method of treating scheduling

achieves separation of concerns and is a substantial conceptual simplification. As will be shown in

section 3.3, the synchronization and scheduling of individual access functions within a module can

be partitioned from the description of access function semantics, which can in turn then be cast as

independent (asynchronous) sequential processes.

8.1.5 Specification Adherence and Tolerance.

What does it mean to say that a module adheres to such a specification? The asscCiation of

module semantics with access functions enables us to relate the concept of adherence to access

function terminology.

I will formalize the concept of adherence by appealing to the fuzzy set theory pioneered by

L.A. Zadeb ie.g., Zade75, Zade84). Fuzzy sets are sets for which set membership is not defined

solely by an in-or-out criterion. Instead, Zadch defines a fuzzy set membership function

p[F]: A -- 10,1],

that indicates, for each element of a set A, its grade or degree of membership in a fuzzy set F.

Often, when A is a continuous interval, pJF] is a monoton( function over A (Figure 3-3).

In software design, in which functional adherence is the only real concern (secticn 2.2.2).

adherence can be defined with traditional set theory. That is, for a given module specification,

there will be a set of modules that adhere to the specification, and a complementary set of

modules that do not. But in hardware design, adherence is not so sharply characterized, for the

reason noted in section 2.1: "Circuits must not only work, they must perform." There must be a

continuum of the utility of specification adherence that corresponds to the continuum of perfor-

mar.ce. Consequently, the set of modules that adhere to a specification is a fuzzy set. I will

further introduce for each specification adherence functions, analogous to membership functions,

which map modules onto the interval [0,11 according to the utility of the degree to which they

satisfy the specification.

U%
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p[F3

F m set of people

of age x
considered to

be young

X

Figure 3-3. A Fuzzy Set F
and its Membership Function #JFJ [Zade84).

Unlike fuzzy sets, however, which possess a single membership function, an IC interface

specification must have multiple adherence functions, one for each of the multiple points at which

modules may or may not adhere to the specification. Happily, one adherence function suffices for

each access function (and hence for each pin). Unhappily, this adherence function is in general

much more complex than the membership function of Figure 3-3. In fact, the adherence function

can be up to four-dimensional, in that the adherence function maps each (possibly two-

dimensional) input and output of its corresponding access function into the range 10,11 (which

range is here always represented on the y-axis (ordinate) by convention).

For analysis, however, the chief concern is with the two-dimensional projection (of the

adherence function) that corresponds to each separate access function input value, so that module

output is graphed on the x-axis (abscissa) and the adherence function value on the y-axis. On the

y-axis of such a projection (e.g., Figure 3-4), the designer can choose interval# of adherence for the

specification, with each interval assigned an intuitive meaning or figure of merit. The intervals

A.- .- . . . . . . . . . . . . .
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for the adherence function output values that are intercepted on the x-axis by these adherence

intervals are commonly referred to as the tolerances for these outputs. This tolerance concept, if

not often formalized, is also familiar. For example, the "plus and minus x%" color banding of

resistors is well-known in electrical engineering. Even in software, where the concept is almost

always abstracted away, one must sometimes acknowledge tolerances, as when testing a floating-

point variable for zero, e.g.

if(abs(x) < tolyvalue) then ....

The ordinate of the adherence function graph is not dimensionless, as has previously been

suggested. Actually, the adherence function measures the marginal utility of reduced tolerance.

In so doing, it provides a means, heretofore unavailable, for the specifier/designer to communicate

to the implementer the cost of suboptimization. As such a vehicle, the adherence function might

be termed an adherence value function. Further research is needed to exploit this important con-

cept to optimize its value in the VLSI design process.

Adherence functions can be formalized as follows. Let

VI: S -r

be a value access function in a specification. The specification will then also include an adherence

function

alv,1J: S X r, 1  9,11

such that. if v, (qO) = xO, a, (qO,x) equals I if x = xO (the specified val-ie) and some other

value in [0,1] if x + xW. The variable x represents an output signal, and thus it may be multi-

valued (a vector).

.Similarly, i

wt:S X d- S

is an effect access function in a specification, the specification also includes an adherence function

[vt]: (S X d,) X S -O,l

such that, if w, (qOxO) q1, 01w, ](qO,xO,q) equals I if q = q1 and some other value in [0,1] if

q + ql. Here the variable xO represents an input signal; it too can be a vector.

,U
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:::- '.Figure 3-4. A Projection of an Adherence Function o11J
* - for a Single Input of an Access Function f.

:..: 2":'Notes:

1. X-axis (abscissa) measures output, state output (if f is an effect access function), or signal
variable output (if f is a value access function). xO is the output value predicted by the
specification access function f.

2. Variable tolerance range for full adherence.
3. Variable tolerance range for marginal adherence.
4. The values fa and ma are chosen by the designer; they are provided in this figure only to

illustrate sample meanings of the intuitive concepts of "full" and "marginal" adherence.

Adherence functions appear to be complicated to use. Part of their complexity may result

from the recognized detail explosion that has hampered efforts toward developing techniques for

abstract interface specification of VLSI designs at refinement levels below the functional. But

. adherence functions exist r,'en at the functional level. In functional specifications, adherence

functions are degenerate, however, and return zero rather tl:..n some other value in [0.IJ for an

input other than the specified one (tide function 1, Table 3-3). Thus, for functional specifications

--- the access function itself suffices for the adherence function, masking the adherence function's

4 . '"r , % . ' '' , ' '- - ."•- " . . .. .. ',' .. - . - - - - ,. . . .' ,. ' . . . . . . . . . . . .
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existence. Identifying the adherence functions is necessary only in more refined specifications;

however, if the existence of these functions is acknowledged at the functional level, the

specification refinement process can be visualized more consistently. (In section 3.4 some ways

will be suggested to simplify adherence function usage without sacrificing precision.)

The definitions of "abstract interface specification" and "adherence" can now be completed,

as follows:

Definition. An IC module abstract interface specification is a -tuple

<P, S, V, W, VAF, WAF>, where

P is a set of pins,

S is a set of internal states,
V is a set of value access functions,
W is a set of effect access functions,

VAF is a set of value adherence functions, and

WAF is a set of effect adherence functions.

In passing, we should recognize also the value of informally including in the specification a set of

English-language assumptions l-eni7S, BritBIal. These assumptions (see section 2.4.3) provide no

essential abstract interface information, but they do set the context for the formal content of the
specification and do so in a way that can be easily assimilated by reviewers. In addition, they
play an important role in communicating the content of the specification to non-tec h nic ally-

oriented reviewers, who may, thus enlightened, be able to provide valuable feedback.

If a specification's adherence functions are constructed appropriately, a consistent interpre-

tation of the concept of adherence can be applied not only across all inputs of a single access
function. but indeed across all access functions it the specification. The result will be that, for

each k, the situations in which adherence functions return values in the interval [k,I1 have a com-

mon meaning.

Definition. Let MS - <P,S,V,W,VAF,WAF> be a module specification, and let M be an IC

module. A pin p of M is said to k-adhere to specification MS if

.

,. .''. "'.- "- -" ." . .' '.,o, -- ..-. "- "' '-, - - ." .' ." -" '" . ,' " -" -'" .' .' -. " o" " - - , .' ' "- - -- -, , - " " " "- ' '° 'i " . . ' ', '."7,' -''
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(1) when p corresponds to an access function v c V, for all qO e dom(v), if M is in state qO

and if x is the output when v is applied to M, then

&lvj(qO,x) > k;

and

(2) when p corresponds to an access function w e W, for all pairs (qO,xO) C dom(w), if M is in

state qO, if xO is the input to M, and if this causes M to make a transition to state q, then

Pjw](qO,xOq) > k.

Further, module M K-adhereo to specification MS if K is the smallest k for which any pin p in M

k-adheres to MS.

Some important corollaries of these definitions can be noted.

(1) If k-adherence is to be established by simulation, exhaustive simulation is required. Modules

must therefore be kept small to avoid the penalties of the combinatorial explosion. For-

tunately, having small modules also contributes to intellectual control, and systems of hun-

dreds of small software modules have been found to be easier to specify and manage than have

systems of tens of larger modules 1Britlb, Parn83b, Parn84.

(2) However, k-adherence need not be established by simulation. If a module's behavior and per-

formance can be predicted analytically (e.g., see [Barr84]), the definition can be tested using

these means.

(3) Adherence to a functional specification is ]-adherence. This concept is meaningful because I-

adherence and its implicit adherence functions are well understood. To provide the same

degree of intuition for k-adherence, the specifier must construct adherence functions carefully

to reflect (a) the degree of tolerance in a specification and (b) the impact of incomplete adher-

ence. For example, if a "cushion" is intentionally built into a specification, the adherence

function should permit a wide degree of deviation before it falls from a value of 1. As another

example, pin behavior may fall off as the square of a voltage deviation but only linearly with

current deviation. The adherence function should reflect this. Research is needed into the

development of adherence functions that both meet these criteria and also yield values that

lend meaning to k-adherence across a wide spectrum of designs.
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3.1 Ezample.

An example will clarify the distinctions of the proposed interface specification technique.

Figure 3-5 provides, using a clear-box specification method, a specification of a register cell used

in the recent development of the WAfer-Scale Systolic Processor [Hedl83, Hedl84b, Cole85] at the

University of North Carolina. The logical operations specified for this cell are SHIFT, invoked by

a value of 1 on the sh signal, and HOLD, invoked by a value of 0.

Figure 3-6 shows how this same module is specified in the proposed method. The major sec-

tions of the specification are as follows:

(1) Assumptions. This informal list states in prose the fundamental assumptions underlying the

module's definition. As in Parnas's method, the assumption list can contain statements about
required subsets, expected changes, and behavior in the face of undesired events.

(2) Specification Level. Identification of the syntactic and semantic levels of the specificatin's

generic state type.

(3) Pin and Internal State Variable Summaries. This list contains: (a) the names of the module

pins and internal state variables; (b) the identity of the access function corresponding to each

pin; and (c) a "call/definition" indicator that tells whether the access function is defined in

this specification or merely called.

(4) State Variable Attribute Initializations. The generic state type requires particularization by

the initialization of its attribute values. For example, the generic state type might define state

variables with capacitive load C; in this section, instances of this type would be particularized

by the assignment of a value to C.

(5) Access Function Definitions. An abstract statement of the actions to be performed on invoca-

tion of each access function. To enhance robustness of the specification under refinement, this

statement should be as data-type invariant as possible.
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NAME WASP 1.0, July 15, 1984
plashin - LSSD input driver
Variations: plashins

SYNOPSIS
LSSD memory element: static memory cell that can convert
to a shift register.

USAGE
This is the basic shift register memory cell used in both
the MinAlu and the Switch.

PROPERTIES
Size delta x = 18 lambda delta y - 90 lambda
Power Consumption (to be determined)

PINS
p2sh input active phi2 restored control
p2shbar input active phi2 restored control
plshbar input unclocked restored control
scin input active phi2 steered scan data input
scout output active phi2 steered scan data output
routbar output unclocked restored data output

DESCRIPTION
Static memory cell that can function as a shift register.
Typically controlled by a single shift signal, sh,

sh =0 static memory
,- --I shift register

This usage assumes the following logic for the control
signals:

-' p2sh = phi2 AND sh
p2shbar - phi2 AND (NOT sh)
plshbar = phil OR (NOT sh)

Data are shifted from left to right.
NOTES

1) Control signals can be generated by cell rwcntl.
RELATED DOCUMENTATION

See manual pages for rwcntl and LSSD memory.
TESSELLATION

Cells abut horizontally to form registers of arbitrary length
iK. that shift from left to right.

ORIG'N
Originally derived from Stanford Cell Library (old version)
cell PlaShiftln (CIF ID 81). Minor modifications by Hedlund
(UTNC) and Lospinuso (UNC).

- LOGIC DIAGRAM

win

P2m

Figure 3-5. A Clear-Box Cell Specifecation fHedl84a4.

- -.. .- .



(6) Data Type Definition#. Here, the generic state type's objects and operations are defined.

These definitions are level-specific, but they can be reused.

(7) Adherence Function Definitiono. In this final section, an adherence function is formally

defined for each access function in the specification. These definitions are also level-specific.



plashin
Module Specification

ASSUMPTIONS

Synopsis: LSSD memory element: static memory cell that can convert to a shift register.
Size: delta x -18 lambda; delta y g0 lambda
Description-Ol: Data are shifted from left to right.
Description-02: p2sh = p2 AND sh; p2shbar - p2 AND (NOT six); plshbar p1 OR (NOT

sb)
Notes-Ol: Control signals can be generated by cell rwcntl.
RelatedDocumentation: See manual pages for rwcntl and LSSD memory.
Tessellation: Cells &but horizontally to form registers of arbitrary length that shift from left to

- right.
Origin-Ol: Originally derived from Stanford Cell Library cell PlaShiftn (CIF ID 81).
Origin-02: Minor modifications by Hedlund (UNO) and LospinUSO (UNC).

SPECIFICATION LEVEL 2

Semantic: 4-strength
Syntactic: immaterial

PINS

Name AccFn C/D

scim G-Scanln C
scout PScanOut D
routbar PDataOut D
p )sh SShift D
p2shbar SHold D
plshbar S..Recirculate D

INTERNAL STATE VARIABLES

* . left
I' right

STATE VARITABLE ATTRIBUTE INITIALIZATION

None.

ACCESS FUNCTIONS

* Gj.canln: none

2 See Table 3-2.

Figure M-. Proposed Specification for plasehin.
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L~s,", ,:',PDataO ut:

#/* Access function PDataOut:

routbar - ROUTBAR - skip; /* Null access function */

P ScanOut:

- ," #/* Access function PScanOut:

S! scout = SCOUT - skip;

SShift:

#/* Access function SShift:
# */
I ? P2SH = p2sh --
# SS = signal(P2SH);
# ST = signalthreshold(P2SH);
lss >= ST -,

? SCIN - scin;
# steer(SCIN,P2SHleft);
# inv(leftROUTBAR);
I SS < ST -. skip;

SjHold:# /***************************************************
#/* Access function SHold:

I ? P2SHBAR = p2shbar --
# SH = signal(P2SHBAR);
# ST = signalthreshold(P2SHBAR);

SH >= ST -
* steer (SCOUT,P2SHBAR,left);

ISH < ST - skip;

S Recirculate:
# **********************************************.***/*

#1* Access function SRecirculate:

I ? PISHBAR = plshbar
# SR = signal(PISHBAR);
# ST = sigalthreshold(PISHBAR);
SSR >- ST-•

# steer (ROUTBAR,P1SHBAR,rigbt);
# inv (right, SCOUT);
I SR < ST -. skip;

Figure 3-6. Proposed Specification ior plwthin. (Cont'd)

B-
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DATA TYPE DEFINITIONS
/s Data Type Definition:
* Four-strength semantic refinement level.
* Immaterial syntactic refinement level.

*At this level the state variable data structure is
* typedef struct stvar
* mnt sigvartyp;
* mt sigfval;
* mnt sigstrength;
* ) STVAR;

swith
* sigvartyp - variable type (4 f our-strength/immaterial);
* sigtval = functional value in (0,1,9 (=undefined));

-% * sigstrength = signal strength in
* (0 (= unknown),
* 1 I floating),
* 2 (=steered),
* 3 (=restored))

*with signal strength codes semantically ordered
* (i.e., i > j .strength i > strengthj)

#define INFINITY 65535

inv(input,output)
STVAR *input, *output;

output-sigv arty p = input-sigvartyp;
output-sigtval

(input-.+sigfval == 9) ? 9 : (1 - input-sigfval);
if (input-sigv arty p < 4) output-sigstrength = 0;
else output-sigstrength =(input-sigstreingth >= 2) ? 3 :0);
return;

int
signal(input)

STVAR *input;

return(INFINITY);

int
signal-threshold(input)

Ile STVAR *input;

return(0);

Figure 3-6. Proposed Specification for plashin. (Cont'd)]
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steer(input,control,output)
ST VAR *input, *control, *output;

output-sigv arty p - input-sigrartyp;L
output-sigfval - (control-sigfval -- 1)? input-sigfval

output-sigtval;
if (input-sigvartyp < 4) output-sigstrength - 0;
else output-sigstrength - (input-sigstrength >- 2)? 2 0);
return;

ADHERENCE FUNCTION DEFINIIONS

Access Fn f Adherence Function c*If)

XPData~ut a(q,x) I if x-sigfval =P-DataOut(q)-sigfval

and x-sigstrength > 2-
= 0 otherwise.

PScanOut a(q,x) = 1 if x-sigfval = P..scanObt(q)-sigfval
and x-.*sigstrengLh > 2;

- 0 otherwise.
S Shift a(q,s,q') = I if q' = S...Shifq.q,s);

= 0 otherwise.
S_Hold a~q,h,q') = 1 if q' = S..Hold(q,h);

=0 otherwise.
SRecirculate a(q,r,q') = 1 if q' = S_.Recirculate(qr);

= 0 otherwise,

Figure 3-6. Proposed Specification for plaehirz. (Cont d)
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Several distinguishing features can be noted in Figure 3-6. In the first place, module seman-

tics are defined on a per-pin basis, rather than globally. Such a partitioning of module semantics

makes the specification easier to construct and verify intelectual!y; it also reduces the combina-

torial complexity of the formal verification task in two ways. First, each pin's semantics a:e only

a subset of module semantics, making the verification task simpler at each pin. Also, for IC
modules, physical fabrication constraints (i.e., pin count restrictions) will continue to provide

motivation to encapsulate module subfunctions, keeping low the number of separate pin

verifications jMoor84].

Figure 3-6 illustrates this partitioning. The module functions SHIFT and HOLD have been

redefined into the access functions PScanOut (which Puts a value on the scout pin), PDataOut,

and the three qualified clock access functions S.Shift, SHold, and S Recirculate (which set the

state variables left and right according to an input value received on the ptsh, p2shbar, and

-. plshbar pins respectively). The sixth access function GScanln is not defined in the specification,

* but appears instead as a function call (? left = Scanin) in the definition of the function SShift.

(Access functions have been expressed in the Communicating Sequential Processes (CSP) notation

- - [Hoar78], which will be explained in section 3.3. The question mark in CSP is an input operator.)

Note that as a specification is refined, it may be necessary to add additional pins: for exam-

.. pie, power and ground pins will generally not appear in less-refined specifications, nor will pins at

S- - both ends of busses. Because the specification is defined on a per-pin basis, however, the change

--- '- required by the addition of new pins is reduced. Power and ground pins generally do not require

access functions, as their information of concern is purely syntactic until one arrives at the most

refined specification levels; even at these levels, their access functions would be easy to construct.

As for the other pins, most specifications contain one reference (definition or call) to an access

function for each logical pin in the module. While some pins (e.g., control busses such as

plshbar) may be implemented with more than one physical termination, for less refined

specifications the access function is assumed to define the behavior at all physical pin termina-

tions. If it does not, as perhaps for long poly control busses, new access functions can be defined

for each termination whose behavior differs. Usually, however, the scope of these access functions

*in module state is small, and hence a small amount of change, if any, is required in adjacent

ace ss functions.

I;

...-.



At least one disadvantage accrues from this partitioning of module semantics into per-pin

components: global module constraints, such as power consumption, current draw, tessellation,

and aspect ratio, are difficult to specify. Possible approaches include (1) apportioning these con-

straints among the pins and (2) constructing distinguished state variables ("constraint variables"),

global to all access functions, that express these constraints. Constraint variables will probably

differ in type from the generic state type, complicating the specification, but they will exist in lim-

ited numbers. Further research is needed to determine the best way to specify global constraints

within the proposed approach.

A second thing to note about Figure 3-6 is that it is executable. Using a CSP interpreter,

one can obtain an approxim.rtion of module performance at any level of specification definition;

such an approximation can be used as a frame for design verification. As an example, Figure 3-7

illustrates the role of a "Specification Interpreter" based on the CSP/84 implementation of CSP

Jaza80a, JazaSOb, Midd84, Midd85] which was used experimentally in this research to approxi.

mate the behavior of CSP access functions (see Appendix B).

Third, the specification in Figure 3-6 is malleable; that is, by undergoing specification

refinement it can continue to serve as a frame for verification throughout the design life-cycle.

Ideally, such refinement affects only the data type and adherence function definitions: there

should be no need to change access function definitions, a fact that strengthens the robustness of

the specification under refinement. Furthermore, if specification refinement is evolutionary, com-

positions of modules specified at different levels of refinement can be interpreted consistently. For

example, the definitions of the operators 'inv' and 'steer' have been enriched to carry out run-time

typing of their inputs, and thus they can process variables of less semantic complexity. The

added overhead of such run-time typing is justified for specification interpretation, which need not

be extremely efficient; and the added complexity that run-time typing adds to data type definition

can be justified because data type definitions, once completed, are reusable and can be catalo-

gued.

Fourth, the specification in Figure 3-6 is both adequate and precise. Adequacy is

guaranteed through specification refinement, which in turn can be accomplished by evolutionary

refinement of the generic state type. Precision exists at all specification levels through the formal

definition of access functions, the generic state type, and adherence functions.

%
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Figure 3-7. Role of Specification Interpreter
in the VLSI Design Process.

(Design representations are listed in the left column, intermediate results for verification purposs
in the right.)
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Finally, the specification in Figure 3-6 is long - four times as long as the clear-box

specification in Figure 3-6. This length is the cost incurred for the benefits of clean partitioning

and facilitated verification, executability, malleability, adequacy, and precision. Section 3.4 will

contain a discussion of the prospects for reducing this cost. First, however, I shall examine in
more detail some issues involved in composing interface specifications that are constructed in the

proposed manner.

8.5 Composition of Specifications.

8.5.1 Synchronization and Scheduling.

As has been noted, a chief advantage of a black-box specification method is its clean separa-

tion of architectural and implementational concerns. However, the complexity of a large black

box cannot be reduced by resorting to descriptions of its internal hierarchy, for to do so would

make unintended assumptions about its implementation. Instead, I seek to reduce black-box com-

plexity in two ways: first, by providing an abstract model of its operation; and second, by parti-

tioning its semantics and specifying them on a per-pin basis rather than globally. Because the

entirety of the abstract state model might be large, it is usually undesirable that any pin effect

access function should be required to update any significant portion of the state. Instead, these

access function effects should be localized to reduce function complexity and to improve intellec-

tual control, aiding verification.

This requirement necessitates the introduction of some mechanism for sequencing the appli-

cation of access functions. A simple example illustrates the problem. Suppose a module has three

state variables, v1 , v2 , and v5 , and two effect access functions, f1 and f2 , where the effect of any

call to f, moves the value in v, to v1+i . Obviously the call sequence f, , f. produces a potentially

different result in v3 than does the sequence f2 , fl. At the same time, to maintain simplicity one

does not wish to involve f1 with testing either the value in v5 or the status of invocation of f2 "

Another expedient is required.

Put another way, a mechanism is needed to schedule and synchronize the invocation of

dependent sequences of independent actions in a way that produces consistent and predictable

results. In a landmark paper [Hoar78J, Hoare proposed a notation, called Communicating Sequen-

tial Processes (CSP), which integrated previous work on this problem. In Hoare's words, the

essential proposals of CSP are the following:
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(1) Dijkstra's guarded commands are adopted ... as sequential control structures, and as the sole
means of introducing and controlling nondeterminism.
(2) A parallel command ... specifies concurrent execution of its constituent sequential commands
(processes). They may not communicate with each other by updating global variables.
(3) Simple forms of input and output command ... are used for communication between concurrent
processes.
(4) Such communication occurs when one process names another as destination for output snd the
second process names the first as source for input. ... There is no automatic buffering: in general,
an input or output command is delayed until the other process is ready with the corresponding
output or input. Such delay is invisible to the delayed proceed.
(5) Input commands may appear in guards. A guarded command with an input guard is selected
for execution only if and when the source named in the input command is ready to execute the
corresponding output command. It several input guards of a set of alternatives have ready
destinations, only one is selected and the others have so effect, but the choice between them is
arbitrary. ... [Hoar78J

Following another suggestion of Parnas [NPS791, I chose CSP as a notation for expressing

scheduling and synchronization for the proposed specification method. The alternative, which is

used in Simula, ClassC, and some commercial IC simulators, is to use an event list driven by a

global clock. Such usage focuses the specification around a global issue, the passage of simulated

time, hindering the localization of concerns that facifitates change management. CSP, on the

other hand, explicitly separates synchronization and scheduling from the description of process

function. The potential for reducing the complexity of change through such a separation of con-

cerns is just beginning to be noticed in the VLSI research community (see, e.g., [Lieb8s).

To use CSP in IC module specification, one collects module access functions into a single

CSP process, which corresponds to the module and is called the "module process." The (CSP)

module process incorporates elements of the module specification in the format shown in Table

3-1. As can be seen, the module process contains all the module specification except for the

level-specific information: data type definitions (which could be included, but which are generally

omitted for brevity) and adherence function definitions.

The core of the module process is the access function definition list. As Table 3-1 indicates,

this list consists of a sequence of guarded definitions of the form

<pin..guard> -. <statementlist>

As has been stated, in a specification there is a one-to-one relationship between module pins and

access functions; however, not every pin has an access function definition in the module process.

Instead, definitions are included only for (1) input pins of effect access functions, and (2) output

pins of value access functions. The remaining pins are referenced from within these definitions as

access function calls. A "Call/Definition (C/D)" indicator has been included in the pin summary

(see Figure 3-6) to reflect whether an access function call or definition is included in the

specification.

a.2

... . . . . .. . . . . .
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<module..process>::
proceen module name
<pin....eclarationjist>
<state..var....eclarationjist>
< access-functionj.efn.jis>
end proc cue

<pin-declartionjlist>:=
<pin...declaration> I<pin..declaration> <pin....eclarationjist>

<pin..declaration> =
{guarded) [input I output] port <sig-type> pinid

<sig..type> :=(Varies with specification refinement level. See data type definitions for the
particular level desired.)

<state -var -declaration -list> <state_var_declaration>
I<state..varj..eclaration> <state..ar....eclarationjist>

<state-var-declaration> :=(Varies with specification refinement level. See data type
definitions for the particular level desired.)

<access function defn list>
<state var-initialization-statementjlist>
*[<guarded defn_list>j

<VB>

<guarded detn list>
<guarded...defn> I<guarded..defn> <VB> <guarded...defnjlist>

(Note that a vertical bar, <'YB>, must separate guarded definitions.)

<guarded-defn> ::=<pin...guard> -~ <statementjlist>

<pin..guard> :=? state-..var-id = pin~id
I!pin id = state var id

Table 3-1. Partial Syntax of a CSP/84 Module Process
V., jJaza8Oa, Jaza8Ob, MiddS5j.

* (Expansions for <state var initialization-statementjist> and <statementjlist> can be
obtained from the references.)

Segregating the semantics of synchronization and scheduling into the pin guard separates

- . them from the access function's behavior. Thus, the module process body consists of an infinite

polling loop (represented by the notation *j<guarded_..efnjlist>J), a loop that tests each of the

pin guards non-deterministically to determine whether a call has been madc of that access
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function from outside the module. If a call has been made, the <statement..jist> associated with

the access function is executed, including any embedded access function calls; otherwise, polling

continues. In Figure 3-6, the outer syntactic brackets of this loop have been omitted, but the

vertical bar that separates access function definitions has been retained to show how the access

functions making up the <guarded.defnjist> are intended to be concatenated into this list.

Returning to the question posed at the beginning of this section, then, how are access func-

- .'. tions to be scheduled in a consistent and predictable way using CSP? No additional mechanism is

needed. One simply introduces in composition other CSP module processes that schedule access

function executions through appropriate call sequences. In Figure 3-6 such an external call is

illustrated: the definition of access function SShift contains the statement

? SCIN = scin;

which is a call of the (implicit) value access function GScann (for "Get Scanin"). As part of

the module composition, the ocin input pin has been matched (through a separate set of port-to-

port connection declarations called a channel fl/e) with an output pin, say P, on an adjacent

module. When GScanlu is called in the execution of function SShift, a call is immediately

issued through the channel file correspondence to the (value) access function for pin P, which in

turn executes and returns a value to the 8cin pin. This value is then input to the state variable

. SCIN to complete the "? SCIN = scin;" function call, and access function S.Shift proceeds.

The module process is therefore an information hiding module in Parnas's s! :se of the term.

It accomplishes the objective of separating architectural and implementational concerns, because

access functions are only an abstract representation of module behavior. Moreover, the inodule

process is attractive as a specification because synchronization and scheduling concerns are clearly

separated from access function definitions. Finally, because this separation has been made, and

because module behavior is specified on a per-pin basis, individual specifications are small and

therefore easily comprehended and verified, even with exhaustive simulation.

Before proceeding to discuss the composition of specifications further, I will enumerate some

issues I encountered in using CSP as an interface specification notation in general and as an access

function scheduling and synchronization mechanism in particular.

& 2* . . . .. ..-w " J . -. ,o ' % " • ' . .. .- -" % " " % " % " * "% % • "% N " ° "- " " - -
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I 3. Power of CSP at a Notation for Interface Specification.

At no time during this research were VLSI interface constructs encountered that could not

be represented in the CSP notation. That CSP should be equal to the task of representing these

construct& is not surprising, because modern programming languages (such as APL, C, and Pascal)

have been successfully used for this purpose, and CSP possesses all the expressive power of these

languages in its sequential process description facility. Additionally, of course, CSP has a

separate mechanism for scheduling and synchronization of these processes.

Two examples of CSP's power for specification follow. In the first, suppose one wishes to

specily a sequence of actions when a signal SIGI is high (1), another sequence when it is low (0),

and a null sequence when it is undefined. CSP represents this specification as follows (in CSP/84

notation):

I SIGI -- 1 -. <statement listI>

I SIGI -- 0 -. <statement list.2>

I '((SIGI== 1)I(SIG1==O)) -- skip;

/* Null access function e/

If, on the other hand, if one wished to specify that an undefined value of SIGI is not acceptable,

he could have eliminated the alternative leading to "skip." This would cause the process to ter-

minate on testing of an undefined value for SIG1. As a better expedient, the designer could "pol-

ice" this condition by replacing "skip" with a trap to an error routine.

A second example illustrates the specification of timing constraints in CSP. The WASP 1.0

design [Hedl84a] contained a signal called "mgl" that was specified to rise and fall only on the

leading edge of the "phi2gl" clock. This constraint can be represented in CSP simply by con-

structing the access function definitions in such a way that the specified behavior is obtained only

if the access functions are called in the proper sequence:

*1 ...

I ? MGL - mgl - skip;/* Null access function */

? PHI2GL - phi2gl

<statements using new value of MGL>
I
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Finally, CSP, or an equivalent notation possessing the power of CSP, seems a good

compromise as a notation for abstract interface specification of VLSI designs. It is general enough

to be reasonably portable and does not require any special extensions for use in IC design

specification. However, it is more explicit than general-purpose programming languages (APL, C,

Pascal, etc.) in expressing concurrency and in controlling complexity by effecting a clean parti-

tioning of synchronization concerns from the expression of other aspects of module function.

Furthermore, its ability to model subsets of the design as discrete processes makes it more suit-

able than general-purpose languages for evolutionary refinement as the design progresses.

S.,.1.f Data/Control Mapping.

In the specification of IC designs using CSP, a certain convention for the mapping of data

and control pins was useful. Data pins were best mapped using guarded CSP outputs and

unguarded inputs, and control pins were best mapped using the reverse. This convention led to

the definition of data pins by value access functions and of control by effect access functions.

One difficulty that can arise with such a convention is if a data output from one modue is

used as a control input in another module, because CSP forbids the connection of two guarded

ports. A dummy module must be constructed and inserted between the two connections; this

module consists only of an infinite loop consisting of an unguarded input and an unguarded out-

put that passes along the result of the input. The introduction of such a dummy module is

unclean, and it is not obvious that it will always produce an accurate specification. Further work

is necessary here.

A second potential difficulty is deadlock, which can result from the connection of unguarded

inputs and outputs (as would be the case if a control output was used as a data input). Middle-

ton [Midd85] is modifying CSP/84, specifically for hardware modeling, to avoid this problem by

preventing unguarded outputs from blocking: if an outpu, is not accepted by the time a new out-

put is generated, the first output is discarded and an error message is sent. In the specifications

constructed in this research, I was always able to avoid deadlock, but as before such avoidance

sometime involved the introduction of artifice (such as the forced "consumption" of an output

value that would not be used). Such artifice also is present in other specification languages, and it

does permit the accurate specification of the desired effect. Neverthelcss, it is unuesirable in that

h.-

, .? ,..,. ,-,,. . ,. .. ... .... ..-.. .. .. ..-.- .-,, ..-... ,.. ..... ........-.... ,...... ....... ,.....-.. ... .....



s68

it alters the correspondence between specification and implementation.

.8.1.S Access Function Eztent.

A benefit of the proposed access function-based specification method is its potential for com-

plexity control through crisp partitioning of module function into functional elements associated

with each pin. In some modules, however, not much partitioning can be obtained. This difficulty

occurs in particular in modules having many data pins and few control pins, because access func-

tions for data pins tend to be trivial (value) access functions, leaving most of the module function

remaining to be partitioned among the few control (effect) access functions. Although different

abstractions for module state could probably be constructed to overcome this, such construction is

not natural and would probably diminish the attractiveness of the method to designers.

When a better partitioning can be obtained, another problem arises. This problem is, where

should the line. be dravn between the effects of the various access functions on the module state?

For example, suppose there are two access functions S-mode and Sphil (a clock), in which the

"mode" signal realigns the module environment for a different mode of operation. Should, on the

invocation of S-mode, the entire module state be reset for the new mode in the current clock

phase, or should the appropriate switches merely be set to activate the new mode when the next

clock access function is invoked?

The answer to this question may differ depending on whether a specification or a simulator

is being constructed. Recall that the goal of a specification is to provide a frame for verification,

and thus it is required only to describe one model of correct operation and a catalog of specified

actions to be taken when incorrect operation (as Parnas says, an "undesired event") is encoun-

tered. The requirements for a simulator are more stringent: a simulator should predict what will

occur even in the presence of incorrect operation. It is important not to confuse these two sets of

requirements, especially in that simulators can be used as specifications, as has been noted earlier.

This is a pitfall of using a simulator as a specification: of the behavior included in the simulator,

it is possible that the designer does not really know which behavior to implement (the "correct"

behavior) and which to ignore.



K-_- - 7 'Z.769

".8.1.4 CSP Baee Language Support.

The concept of the CSP notation, as explained by Hoare IHoar78], does not include a

language for expressing the contents of the sequential process embedded in a guarded CSP corn-

mind. In particular, the implementation of CSP I used, CSP/84 [Jaza80a, JazaS0b, Midd84], did

not support closed subroutines in its base language. Even though escape to the programming

language C was provided, there was no easy way that C subroutines could be linked into the CSP

code. This omission was intentional, in that through a robust subroutine facility control transfers

could be implemented that subvert the partitioning of scheduling that is the main attraction of

CSP. Yet, for economy of coding, and particularly when greater levels of specification refinement

with their more complex data types are being modeled, the abstraction that can be gained

through closed subroutines is essential to understandability and cost-effectiveness of the

specification. For the IC specification application, it is necessary that a CSP implementation

include at least a restricted closed subroutine capability in its base language.

.8.1 Performance.

Suppose two ,r more modules, each k-adhering to their specifications, are composeu

together. What, if anything, can be said about the k-adherence of the composition if adherence

functions remain the same for pins that appear in both components and composition (Figure 3-8)?

Pi P2 P3

Ml M2

P4

MI k|-adheres to its specification; M2 ki-adheres to its specification.

Figure 3-8. k-adherence of a Composition.
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Before this question can be answered, the concept of "composition of specifications" muqt be

defined: under what conditions is the composition of specifications itself a (consistent)

specification, and what are the characteristics of such a composition? Let

M, = <P,Si,V,WrVAF 1,WAF 1> and

M2== <P2,SV2,WVAF2WAF,>

be specifications. Then

M = <P,S,V,W,VAF,WAF>

is a composition of Mi and M2 if the following conditions hold:

(1) P is a proper subset of P U P2 ;

(2) S = S1 U S2 ; and

(3) For each pin p c P1 U P2 with associated access function v(w) e V1 U V2 (WI U W 2 ) and

adherence function a (0) e VAF1 U VAF 2 (WAF 1 U WAF 2 ), C P -- V V (w f W) and

a e VAF (0 e WAF). In other words, external pins in the composition retain their prior

access and adherence functions.

The composition is called consistent if the difference (P1 U P2 ) - P is a set of pairs of pins

( <PlP 2> P, P 2 C P2 )
such that

(a) Exactly one pin of each pair has an associated access function defined (rather t'an called)

in VI U V2 U WI U W2 ; and

(b) The access functions corresponding to the pins in the pair are neither both value nor both

effect access functions.

In a real sense, then, the composition behaves as the sum of its component parts, each retaining

its identity and behavior with no real concern for its environment. Such information hiding, as

has been noted, was a goal of this approach for change management. The consistency condition is

really a syntactic check, akin to the verification that inputs and outputs are connected in pairs,

and is not central to the development. Note that mixed-level composition is also permitted by

this definition; as section 3.1.2.1 indicates, such composition requires only the presence of

appropriate data type conversion facilities.
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Assume, then, as in Figure 3-8, that two modules MI and M2 are composed, with adher-

.aences k nd k2 , respectively. Observe that it is possible for the composition to exhibit k-

adherence for k greater than either ki or k2; for suppose pin PI and P3 both 1-adhere to their

specifications, pin P2 ki-adheres to the specification of Ml, and pin P4 ki-adheres to the

specification of M2. In this case it would be possible for the composition to 1-adhere to its

specification even though k, and k2 were substantially less than 1. Shortfalls in th adherences of

P2 and P4 can be completely compensated for by large safety margins built into their correspond-

ing pins in the adjacent module. A composition, then can exhibit 1-adherence even though nei-

ther component does.

What, on the other hand, is the worst case? Suppose, in Figure 3-8, that all pins of MI k-

adhere and all pins of M2 k-adhere, 0 < k,, k <1. Is it then possible that the composition

might exhibit k-adherence for k < min(kk 2)? A moment's reflection will show that such a case

is also possible. Suppose all pins but P2 I-adhere to their respective specifications, and P2 0.5-

adheres to the specifications of both M1 and M2. Then, by definition, both M1 and M2 0.5-

adhere to their specifications, but if the diminished output from MI at P2 is insufficient to drive

the higher-than-expected load in M2 at P2, M2's external output pins might not function at all,

and the composition would exhibit 0-adherence.

Given simply that two modules k -adhere and k2-adhere, then, the level of adherence of

their composition cannot be predicted a priori. It would be helpful to conduct further research in

this area to determine the kinds of restrictions on design parameters that would permit such a

prediction to be made. Udding [Uddi84] has recently published some work of this kind, which
provides tests or the robustness of module dela-insensitivity through composition; additional

work is ongoing [Moln85 .

As an example of the type of results that are needed, observe that a lower bound on compo-

sition adherence can be obtained if adherence shortfalls in one module can be "translated" into

adherence shortfalls in the other. Suppose, in Figure 3-8, that pin Pi k fadheres to module

* specification Mj. Suppose further that signals flow through both P2 and P4 from Ml into M2.

-
e . Finally, suppose the capability is available to "translate" the adherence shortfalls (1 - k21) and

(1 k4 1) by decreasing k. and k2 (to, say, k',., and k4) enough to raise k21 and k41 to 1. That is.

'. pin pairs with the adherences (k., k22) and (1, '2) would behave identically; so would pin pairs

with (k4 1, k4) and (1, k'4 2). In this restricted case, then, the composition adherence is bounded
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below by

min [k 1 ,k' ,k',k j.

8.4 Simplification* to the Approach Permitted by VLSI Design Characteristic#.

As has been shown, the abstract interface specification method proposed in the preceding

sections has many desirable attributes; however, it is also costly to build and use. Much of the

cost comes from the method's generality. In this section I will examine ways of exploiting charac-

teristics of VLSI design to reduce this cost.

In geaeral, cost reduction can be pursued through restriction of the method to certain stan-

dard formats that are of interest to VLSI designers. First, for example, a standard language can

be used for expressing access functions, data type definitions, and access function definitions. A

standard language improves executability characteristics by capitalizing on portable, optimized

system software developed for interpreting this language. Also, it improves intellectual control by

allowing designers to express function with familiar programming objects. In this research I chose

to use the language C as such a standard, chiefly because my CSP interpreter, CSP/84, was C-

compatible.

Semantic Refinement:

1. Functional: Three values (0,1,X); no signal strength information.

2. Four-strength: Three functional values plus four signal strength levels (unknown, floating,
steered, restored).

3. Drive-load: One voltage level functional value plus an average switching current value. Rise
and fall times are symmetric.

4. Eli: Voltage levels plus switching current as reflected in nominal pin voltages, resistances,
capacitances. Rise and fall times may be asymmetric.

Syntactic Refinement:

1. Immaterial: No geometric information.

2. Pingrid: (X,Y) virtual grid coordinates provided for each pin.

Table 3-2. Specification Levels Used in this Research.

U!
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Next, one can restrict the specification refinement hierarchy of Figure 2-4 to certain levels at

which generic state types have been predefined. In this way, each specification need not contain

full definitions of these data types; instead, it need only refer to previously catalogued definitions.

The specification refinement level is entirely a designer option, reflecting his/her evaluation of the

A "~ cost/effectiveness tradeoffs inherent in constructing specifications at such a level. The introduc-

-, tion of a new level involves only the definition of a new generic state type and a corresponding set

of adherence functions. Therefore, I make no claim that the types I have chosen are the types

that should be used in specification construction. Table 3-2 lists the specification levels that were

used in this research; some of their definitions have been included in the specifications rx Appen-

dix A.

Together with a standard generic state type set, one can construct a matching set of stan-

dard adherence functions that operate on data types at each refinement level. Table 3-3 contains

definitions of the standard adherence functions that were chosen for this research.

Why were the functions in Table 3-3 chosen? The first function, labeled "Functional" or

"Spike," is the implicit function inherent in all functional specifications. The others are generali-

zations of this function that incorporate various kinds of specification tolerances. The Square

Band function is a direct generalization of the first function, but it is insensitive to changes in k

when k-adherence is being measured. Therefore, the Linear Ramp function, which provides the

same tolerances as the Square Band but which is linearly sensitive to changes in k, was intro-

S." duced. The Normal function has better mathematical properties for composition (e.g., continuous

derivatives) than the other functions and is also sensitive to changes in k; it was considered to

investigate the utility of these better properties.

Finally, when such variables as signal strength are being considered, one-sided functions are

of more use than two-sided; signal drive greater than some minimum, or signal load less than

some maximum, is generally of no concern. Consequently, one-sided alternatives were also con-

sidered for all adherence functions studied. Of course, an adherence function can be a combina-

tion of two-sided and one-sided functions; in general, it may be any combination of functions on

its data type components. Fcr example, Figure 3-6 contains for the "P-" access functions a com-

bination of Spike and One-Sided Square Band adherence functions: the Spike function measures

adherence on the data type component vigival, while the One-Sided Square Band function meas-

ures adherence on the data type component oigatrength.

Uw
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1. Functional (spike)
m

B

qml

I I U I I

xG

2. Two-sided square band
m

- d d

(One-sided square band functions also could be used)

3. One-sided Linear Ramp (LR)

LRI (x) LR (x)

-4-.
| " 1 I I k  0 ,,I I I I

x0x
(Two-sided LR functions also could be used)

4. One-sided Normal (N)

NI(x) ND(x)- 1

X0 xl
(Two-sided N functions also could be used)

Table 3-3. Adherence Functions Used in this Research.
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In summary, compared to Figure 3-8, the incorporation of these simplifications reduces the

size of an interface specification constructed with the proposed method. Nevertheless, the cost of

a good specification is high, and it increases with the level of specification refinement. This cost

can be justified only by comparing it to the cost of a bad specification. Because there have been

no controlled studies that quantify this comparison (nor are there likely to be, because of the cost

and difficulty of such studies), each designer must decide to what extent his/her individual project

merits the use of interface specifications. The object of this research is to show that, while good

abstract interface specifications for VLSI-scale design are complex, the application of software

technology can reduce their tife-cycle cost. In the following chapter I will describe experiments

which suggest how well the proposed approach attains this objective.

-p
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CHAPTER 4

TECHNIQUE EFFECTIVENESS

In chapter 3, I reported on the development of a new approach to VLSI design abstract

interface specification, illustrating the approach with a method that employed it. This chapter

contains an evaluation of the approach using the criteria laid down in section 2.2 for abstract

interface specification techniques. Four separate categories of questions are addressed in this

evaluation:

- How well does the method scale up to VLSI complexity levels, and is it perceptibly cost-

effective at these levels?

How easily can specifications be refined? Is the method malleable and adequate throughout?

- Is the method spare? In particular, can geometric information be included with the same

mechanisms used for functional and electrical information?

- How well does the specification manage change? Does the specification approach inhibit the

propagation of change to other parts of the design?

Experiments or studies were conducted to gain insight in each of these areas. In two subsections,

this chapter describes first the experimental design and then the experimental results.

4.1 Ezperimental Design.

4.1.1 Scalability Test.

Unlike clear-box specifications, which control complexity with hierarchy, black-box

specifications use abstraction as their primary complexity management technique. That suitable

at stractions exist for VLSI-scale modules is not in question: examples of such abstractions are

many and varied. It remains only to show that abstractions of large modules can be effectively

used in the proposed class of methods.

The only obstacle to such a demonstration is the traditiona, one: the unavailability for

study of detailed public-domain 'VLSI designs. Such designs are sufficiently costly to develop that

they are beyond the threshold of pure research laboratories, and the d-signs developed for the

marketplace remain proprietary. Rather than construct an artificial example (even if the

. -
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resources for such construction were available), I chose to specify as demonstrations of the tech-

nique SSI, MSI, and LSI designs available locally. The extrapolation of complexity factors present

in these designs should provide insight into the scale and perceived cost-effectiveness of

specifications at VLSI levels.

The proposed method was used to construct abstract interface specifications of several

smaller designs as well as a specification of an LSI chip, the WAfer-Scale Systolic Processor

(WASP) developed in 1984 by Kye Hedlund and his associates [Hedl83, Hedl8-ib, Cole85]. Based

on the relative costs of constructing these specifications, estimates were made of the scalability

and perceived cost-effectiveness of the method. These estimates are presented in section 4.2.1.

A word about the selection of designs for this testing is in order. These designs, whose

specifications are shown in Appendix A, are all real designs, originally implemented in fullcustom

nMOS combinationa! and sequential logic. To keep the experiments manageable, the size of the

experimental test set was kept small; therefore, certain types of designs were not included. For

example, I deferred consideration of semi-custom modules for later research; however, because

semi-custom design is more constrained than full custom design, it seems intuitive that a system

that manages complexity satisfactorily in the full-custom design environment should translate well

to the semi-custom environment. Also, because the specification method offers clock signals no

special semantic interpretation, I made no effort to include modules that were specifically

intended for asynchronous operation. Finally, because the method encompasses analog

specification in the course of refinement, I included no modules specifically intended for analog

implementation.

The design modules sflected for this specification testing are summarized in Table 4-1.

4.1.' Malleability Test.

Whether or not a specification is malleable depends on (1) its ease of being refined with

detailed design parameters as these become available; and (2) its service to the designer at many

points in the life-cycle. The latter question may be rephrased, "Does the specification continue to

provide a frame for verification at numerous design life-cycle points?"

%*% %

--2 -



78

Module Name Size Description
plashin 7 aMOS shift register cell (sequential

logic). This module was evaluated in
the context of a shift register of
four such cells.

fnblk 8 nMOS combinational logic. This module
was evaluated in the context of the 'malu'
(next entry).

malu 35 nMOS microprocessor ALU; composition of
5 smaller cells. This module was
evaluated in the context of the
microprocessor datapath.

wasp 3860 Array of simple processors embedded in
a switch matrix. Processors can perform
the 16 Boolean functions on two bits.

Table 4-1. Experimental Module Test Set.

Source of designs: WASP lHedl84a, Hed184b].
Sizes are in numbers of transistors in an actual implementation.

To gain a feeling for how easy it would be to refine specifications written using the proposed

approach, I refined a design through three different semantic levels and two different syntactic lev-

els. 1 used the number of specification lines changed in each refinement as a rough measure of

refinement effort. These results are presented in section 4.2.2.

Next, I executed the specifications thus constructed at each semantic refinement level and

evaluated informally the ease of comparing these outputs to simulation output from actual

designs at each level. I further examined the ease of verifying syntactic specification components

with actual design syntax at each syntactic refinement level. The results of these evaluations are

also presented in section 4.2.2.

.4.
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4.1.9 Sparenee Study.

To evaluate the method's spareness, each specification element (enumerated in section 3.2)

was judged informally according to the following criteria:

(1) Is the information included in this section essential to design? What part, if any, of the

design could not be accomplished if information in this section were omitted?

(2) Is the information included in this section redundant, that is, presented anywhere else in

the specification? Could the information in this section be presented more compactly?

The results of this analysis are presented in section 4.2.3.

4.1.4 Change Management Teats.

The proposed method's effectiveness in change management was evaluated in three ways:

(1) (Vertical Change Propagation). First, I changed the specification of a module that had

already been decomposed and had had its components specified. I measured the amount

of change that propagated to the component specifications, using once agai, the metric

of number of specification lines changed.

(2) (lorizontal Change Propagation). Second, I investigated the conditions under which less

than full adherence to a module specification affected that module's environment. The

horizontal change propagation test consisted of the following steps:

* I developed a representative sample set of design modules, each in the context of a

larger design.

. I simulated the performance of the modules in context.

e I made "typical" changes to the modules and evaluated the k-adherence of the

changed modules to the specification.

9 I re-simulated the performance of the changed modules in their context.

e I determined under what conditions, if any, change propagated to the studied modules'

environments.

(3) (Internal Robustnee). Third, I measured the amount of modification that was needed in

a large specification to reflect several actual changes the design had undergone.
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4.1 Experimental Result8.

4.1.1 Scalabitity Test.

The goal of this test was to deduce, using data from the experimental specifications, n idea

of how large the specification for VLSI-scale designs would be.

Table 4-2 summarizes the experimental data, and Figure 4-1 shows the relationships

between design sizes (in number of transistors) and specification sizes (in fines). The points

labeled "F" represent the absolute size of specifications constructed at the functional and four-

strength refinement levels; The points labeled "D" represent the absolute size of specifications

constructed at the drive-load refinement level; and the points labeled "I" represent the size of the

former specifications with their level-dependent sections removed.

These data cannot, of course, be used to guarantee the practical scalability of the prop::ed

approach. They are presented merely to show that, for the specifications considered, specification

size grew slowly with design size.

4.,.1 Maleability Test.

As was explained in section 4.1.2, the evaluation of the proposed approach's malleability

consisted of two phases. In the first phase, I found that specification refinement permitted the fol-

lowing percentages of specification lines to remain unchanged:

Refinement
(Table 3-2) Lines Unchanged' % Unchangod

functional to 77/82 93.9
four-strength

four-strength to 69/161 42.9
drive-load

functional to 69/161 42.9
drive-load

immaterial to 82/112 73.2
pingrid

Notation: Entries are of tie form /4 where a is the number of specification lines unchanged is the indicated

refinement, and d is the larger of (total number of lines in the unrefined specification, total number of lines in the refined
specification).
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Spec'n Spec'n Trans- Specification Lines
Number Levels istors Level- Level-
(App.A) (sem/synt) (typical) Indept Dependt Total

B-6,7 fnal/immat 7 36 41 77
3-6 4str/immat 7 36 46 82
A-i drvl/immat 7 36 125 161
A-2 4str/pingr 7 36 76 112
A-3 drvl/immat 8 28 151 179
A-4 drvl/immat 35 87 191 278
A-5 fnal/immat 3860 113 134 247

Table 4-2. Sizes of Experimental Specifications.

Note: "Specification lines" figures count expansions of closed-form adherence functions (because
parameters may differ from pin to pin), iterative definitions (such as "FIB], B=O..3") as one line,
and closed forms of open subroutines. Comments, blank lines, headers, the "Assumptions"
section, and code used for consistency checking only were not counted.

Specif icat ion

size (lines)

10 Leend

£F

102 -

10

": 10 '

10 DesIon size
(transistors)

* 10 10 1010 10 10

Figure 4-1. Scalability of Proposed Specification Method.
(See te:t for legend.)
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This analysis confirmed that the partitioning inherent in the specification method allowed a

substantial fraction of old specifications to be used in refined specifications. Also, since the

changed portion consisted largely of data type and adherence function definitions, which can be

reusable, the potential exists for making refinements with little effort indeed.

Further, although the module studied in the previous analysis was a small one, it seems real-

istic to believe that this good performance will hold in the specification of larger modules as well,

in that the percentage of specification lines that was refinement-level-dependent remained roughly

constant regardless of module size:

Spec'n Transistors % of Specification Level-Dependent
(Fig.) (typical) Functional 4-Strength Drive/Load

B-7 7 53.2
3-6 7 56.0
A-1 7 77.6
A-2 7 67.9
A-3 8 84.4
A-4 35 68.7
A-5 3860 54.3

Furthermore, the complexity of the transformations carried out in specification refinement appears

to be independent of module size. Although larger modules require the definition of more

different data type operations, this increased volume is reflected in specifications at all refinement

levels. In summary, the specifications studied in this research exhibited good reusability and thus

were easy to refine.

Using the specification to verify the design at the functional and four-strength refinement

levels was straightforward. The output from both simulation and specification interpretation was

in the same digital format, and, because spike adherence functions could be used meaningfully at

these levels, comparison of the two sets of outputs for equality satisfied the verification task.

Verification decisions were rendered as either 1-adherence (if all module pins adhered fully), or

(otherwise) 0-adherence. At the pingrid syntactic level, spike adherence functions are no longer

useful in general, but this simply meant that verification decisions could be rendered in terms of

k-adherence for all k in 10,11.

At the drive-load semantic level, an inconvenience arose: the output of the simulator used

was in a format (graphic waveforms) different from the output of the specification interpreter

(numeric text). While 'his problem was not a conceptual difficulty preventing effective

verification of the design, it does illustrate the desirability of integrating such a specification inter-

preter into the design tool suite.
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4.t.S Spareness Study.

The proposed method yields a specification with seven sections or elements. The first three

sections are informational, providing an immediate abstract view of the module to the designer.

The next two sections are more detailed, and the final two more detailed still. Through its parti-

tioned structure, the proposed specification approach presents the module in a layered way and

identifies which details should be included and which omitted.

The following observations may be made about the essentiality and redundancy of the infor-

mation contained in each of the seven elements of the proposed specification:

(1) Assumptions. As was tLe corresponding section in Britton, Parker, and Parnas's software

specification [Brit8la], this section is "partially redundant." In addition to its casting impor-

tant portions of the formal sections to follow in a more easily-understood way, it also expli-

citly states premises that underlie the construction of the remainder of the specification. It

would be difficult to justify the essentiality of this section, but without it the specification

would communicate much less effectively. The assumptions section, then, is included for

efficiency rather than for completeness.

(2) Specification Level. This small section identifies the specification data types being used. Like

the assumptions section, it too is informational.

(3) Pin and Internal State Variable Summaries. The information in this section essential to the

specification process also could be inferred, in this case from the access function section.

Nevertheless, this index facilitates the construction of a specification interpreter and also pro-

vides an abstract view of the module.

(4) State Variable Attribute Initializations. This section, which directly follows the summaries of

pin and internal state variables, declares particular values for their level-specific attributes.

Consequently, this section is clearly essential, in that it directly provides syntactic reference

values for static verification. Further, semantic values in this section are referenced by access

functions for dynamic verification. The method provides identical facilities for including both

semantic information (usually functional/electrical) and syrtactic information (which tends to

be geometric).

4~.!
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(5) Acces# Function Definitions. The heart of the specification, this section specifies the behavior

of each IC module pin. The partitioning of module function into per-pin components, even

when these components are identical or similar, need not produce excessive descriptive redun-

dancy, because common elements can be factored out and described by a reusable data type

definition. The treatment of timing through a uniform implicit discipline does make the

description of function slightly less compact, but large compensating dividends are gained by

the separation of concerns this partitioning produces.

(6) Data Type Definition#. The data structures, and operations on them, comprising the generic

state type are defined in this essential section. Separation of level-specific definition into this

section from the access function definition section is less than optimally compact; as before,

however, the ease of refinement that such a separation imparts, with the corresponding gains

in malleability, compensate for this type of presentation.

(7) Adherence Function Definitions. Without this section, the specification could not convey a

precise understanding of the relative merits of various degrees of adherence. Further research

is required to determine whether this concept can be conveyed more concisely than with such

functions.

4.2.4 Change Management Test,.

4.2.4.1 Vertical Change Propagation.

In this test, I measured the amount of change propagated through a single decomposition

level by several real-world changes Ppplied to a parent specification. The changes applied are

enumerated in Table 4-3.

The results of this test are reported in Table 4-4. Usually, the propagated complexity was

of the order of the original change, a pleasant result considering that several types of changes and

differing specification refinement levels were considered. For the changes numbered 2 and 4, how-

ever, there was an order of magnitude increase in the propagated change.

Z.
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Change
No. Description

1 Add a pin to clear the accumulator in each of the
nine WASP processing elements.

2 Generate an internal control signal to recirculate
the internal state of the processing elements.

3 Correct n error in the logic of the processing
element function block.

4 Change the edge membership of module pads to effect a
more balanced distribution around the chip perimeter.

5 Change from a broadcast to a pipelined clocking
discipline.

6 Change scan-in/scan-out lines from driven to
precharged.

Table 4-3. Types of Changes Studied
for Vertical Propagation Effects.

Semantic/ Spec'n Lines Spec'n Lines
Syntactic Changed/ Changed/Total

Refinement Total Lines Lines in Percent
Change Level in Parent First-Level Propa-

No. (Table 3-2) Children itated

I funct/immat 5/247 5/483 100
1 drvload/immat 7/308 7/278 100
2 funct/immat 2/247 22/503 11I003 funct/immat 4/247 4/503 100
3 drvload/immat 16/278 16/775 100
4 funct/pingrid 98/443 887/1504 905
5 funct/immat 19/247 57/475 300

6 funct/immat 0/247 0/503 0

Table 4-4. Vertical Change Propagation.

Notation: Columns 3 and 4 present a ratio, n/d. In column 3, n is the number of lines changed in
the parent specification and d is the larger of (total number of lines in unchanged parentspecification, total number of lines in changed parent specification). In column 4, n is the total
number of lines changed in all the specifications for the first-level child modules of the parent, and
d is the larger of (total number o lines in all unchanged first-level child specifications, total
number of lines in all changed first-level child specifications).

- In the first of these cases, change 2, a new internal module had to be specified: it was the fixed

cost of constructing an entirely new submodule specification (even though only 20 lines long)

that caused the large percentage change. This result suggests that, while in-place

specifications may be easy to change, there is a disproportionately high start-up cost for new

-.. - ....................



SB

specifications. Tools that assist in creating routine portions of the specification could alleviate

this cost.

- The second case, change 4, exhibited poor robustness chiefly because the proposed specification

approach itself was insufficiently applied. The syntactic data type chosen, pingrid, called for

the specification of absolute coordinate points on a two-dimensional grid. This was not a good

use of abstraction. Consequently, each change to the parent module specification rippled

through several first-level child modules. A better abstraction, for example one in which edge

membership is described syml-olically, could be expected to resist change propagation more

fu'ly. A corollary observation might be that less abstract data types appear more susceptible

to vertical change propagation.

4.2.4.2 Horizontal Change Propagation.

The types of test changes to be introduced into the test module depended on two factors.

First, there was the level of refinement of the module specification. The signal data types at the

functional specification level are not rich enough to admit value perturbations and still have their

modules k-adhere to specifications for any k>O. Slight specification refinement (to include, say, a

small finite set of signal strengths), produced similarly unsatisfactory test-bed specifications. I

chose, therefore, to specify test modules at a more refined level. Generally, the drive-load

functional/electrical level (Table 3-2) was used: it was simple, but not so much so that essential

specification elements were not illustrated.

The choice of alherence function also influenced the types of changes that would be found

interesting. Spike adherence functions (Table 3-3), which reduce k-adherence to l-adherence for
all k>0, and Square Band adherence functions, which are also insensitive to change from a

k-adherence standpoint, were discarded for analysis. The Linear Ramp and Normal functns, -I
therefore, were chosen for the specifications used in this study. For consistency of analysis, I used

the one-sided adherence functions illustrated in Figure 4-2: the decreasing functions are recipro-

cals of the increasing Linear Ramp and Normal functions, so that a zero drive and an infinite load

both have 0-adherence. Once the specification, including adherence functions o(x), was esta-

blished, changes were introduced by perturbing output values to those values of x for %hich

0 < a(x) < 1.

. . . "I
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Figure 4-2. Linear Ramp (LR) and Normal (N)
Increasing and Decreasing (I/D) One-Sided Adherence Functions

Used in this Research.

Figure 4-3 illustrates the canonical test environment. It consists of an incoming signal path,

a pin on a module boundary, a propagation path, and an observation point. Note that the obser-

vation point can be outside the test module, in which case the pin is an output pin and the propa-

gation path in the module's environment, or it can be inside the test module, in which case the

pin is an input pin and the propagation path inside the test module.

The testing showed that quantifying the amount of propagated change depends on !nowing

both the k-adherence of the test module and the characteristics of the propagation path. Alterna-

tively, the test suggested that different adherence functions should be used depending on the

intended utilization of module pin signals, so that "k-adherence" acquires a uniform meaning for

each value of k.

• ".' ..., , . . , .,- ,- ,.- . '. ° -' .... '. ' ', .., , . .- . . ... ,- " ., . . .". . .. " . o . .= . .. ,-,".-" .<,2:"



observation point
pin, -,'

propagation path

module boundary

Figure 4-3. Canonical Test Environment.

For small discrepancies in adherence, a more complex propagation path tended to

* ameliorate the effects of less-than-full adherence to a module specification. The simplest type of

path measured was a bus (Figure 4-4). Electrically, the pin and observation point are the same

node in this arrangement, so that the waveforms observed at the two points are identical. Less

*than full adherence to the specification at the pin, therefore, translates directly into a similar

deficiency in the environment. The implication is that it is important for long (e.g., control) Sig-

nal drivers l adhere fully to their specifications; consequently, adherence functions for bus drivers

should be steeply sloped.

Even a simple change to the propagation path reduces the effect of less-than-full adherence.

Figure 4-5 illustrates change propagation through a steered s evnal path in MOS. Here the pin

and observed Ataveforms, originly separated by a threshold voltage drop, tend to come togc ther

as k diminishes.

This effect is even more pronounced when signal restoration is included in the propagation

path. Figure 4-6 illustrates that severe degradation of the pin signal is possible before an eteect is

noticed at the observation point. However, as Figure 4-6 indicates, a rapid cro~ssover occurs at

* low values of k: suddenly the observed signal becomes considerably wor-s- than the pin signal.

This phenomenon indicates that, for mcre complex propagation paths (especially those including

restoration of signals), careful design in the propagation path may achieve i~ioderate tolerance to

less-than-full specification adherence. The adherence function for such pins, then, should be

. gently sloped around the specified value, with a steep slope being attained around the point of

behavioral failure. Table 4-5 summaries these results.
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observation point

module boundary

k-adherence
LRI NI pin waveform observation Point waveform

1.0 1.0

.169 .0011

.163 .0010

Figure 4-4. Change Propagation through a Bus.
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observation point
module boundary

k-adherence
LRI NI via waveform observstion point waveform

1.0 1.0

.169 .0011

Figure 4-5.
Change Propagation throngh a Steered Signal Path ia aMOS.
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Figure 4-6.
Change Propagation through a Restored Signal Path.
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It is not evident from these data that continuous adherence function curves are needed.

Piecewise linear functions should suffice.

i

Type of Pin Adherence Function Characteristics

bus driver should fall off sharply when
specified value not achieved

pass-gate logic near-unit slope probably ok

for nMOS implementations

restored logic tolerant to small discrepancies;
should fall off sharply around
failure point for large
discrepancies

Table 4-5. Desirable Adherence Functions
for Controlling Horizontal Change Propagation.

4.2.4. Internal Robuetnese.

Having illustrated how well the proposed approach resists change propagation from module

to module, I now will examine how much change is introduced into a single module specification

by typical real-world changes. Each of the changes enumerated in Table 4-3 was an actual

change made in a real design. Observe from the statistics for parent modules in Table 4-4 that

each of the changes, with one exception, resulted in the modification of less than 10% of the lines

ia the specification. Because this specification approach emphasizes partitioning and minimal

redundancy, it is not surprising that the studied changes did not result in major specificatic.n

rewriting.

The one change (change 4) requiring over 10% of the specification lines to be changed has

been identified before as an instance of a less-than-optimal usage of the proposed approach. That

is, in this example insufficient use was made of abstraction. A more abstract data type for the

syntactic specification information, such as an extension of the abstractions used in modern sym-

bolic layout systems (e.g., VIVID [Rose84]), would have improved specification robustness in this

example. With this specification approach, as with all representation systems, it is true that

robustness under change declines as the representation data types become more concrete. Yet

even with the rather concrete data type used in this example, the partitioning inherent in the

j_ z_.'
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proposed approach prevented the need for wholesale specification changes: the worst-cue change

of 22% is certainly tolerable.
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CHAPTER 5

CONCLUSION

In this final chapter, I will summarize the principal conclusions from this study and make

suggestions for future research.

3.1 Principal Conclusions.

5.1.1 Software Technology Transfer to VLSI Design has been Demonstrated.

Despite its intuitive appeal (cL chapter 1), the transfer of software technology to VLSI

design has as yet been a largely unfulfilled promise. Although similar approaches to common

problems can be observed in software engineering and VLSI design, few of these similarities can

be traced to an explicit attempt to transfer software technology [Gros83c]. As a result, some

skepticism has developed of late, and researchers are now seeking demonstrations that confirm the

promise of software technology transfer.

The research carried out in this dissertation is such a demonstration. Abstract interface

specification techniques developed exclusively in the software domain were extended and applied

successfully to VLSI design. To recapitulate, these techniques included: (1) using the definitions

of abstract data types in interface specifications; (2) obtaining the precise partitioning and com-

plexity control of module interface specifications using a finite state machine and access function

model; and (3) expressing and interpreting these interface specifications with Hoare's Communi-

cating Sequential Processes (CSP) notation. That the transfer effort was successful is evidenced

by the demonstrated realization in VLSI interface specifications (chapter 4) of the benefits of these

software techniques.

5.1.1 The Proposed Abstract Interface Specification Approach Has VLSI-Level Power.

To repeat from chapter 1, VLSI design is integrated circuit design in which brute force no

longer works. This research has proposed an approach for abstract interface specification tl'at

demonstrates specification power appropriate to VLSI complexity levels.

F .-



Reasonable extrapolations of parameters from specifications constructed in this study sug-

gest strongly that the proposed approach can be used to specify functionally in tens of pages

abstract interfaces of designs whose implementation requires tens of thousands of devices. Furth-

ermore, both functional and performance specification are supported at these levels of integratio,

and high-level specifications can be evolved (with non-trivial reusability of their contents) to pro-

vide a verification frame at later design stages. A third implication of the data in this study is

that the total size of performance specifications, if needed, is manageable, roughly an order of

magnitude larger than the size of the corresponding functional specification. A method of quanti-

fying adherence to the specification is provided for use at these levels of detail. In summary, the

research provides a means of realizing and exploiting abstraction and precise partitioning for

VLSI-scale complexity control.

5.1.3 VLSI De.ign Specification is Difficult and Not Universally Inspiring.

This research also confirmed that precise specification, a difficult task in the software

domain, is no easier in VLSI. Numerous classes of component assumptions (section 3.2) must be

included if the interface specification is to be complete. Identification and inclusion of these

assumptions is a resource-consuming process; abstract interface specifications take longer than

e-:pected to construct and are much larger than clear-box specifications now commonly used in

VLSI design. As has been noted, of course, such clear-box specifications use a monolithic (unpar-

titioned) approach that strains or exceeds designers' intellectual capacities, even at MSI/LSI lev-

els.

In this regard, I should note that I found in the process of conducting this research that the

value of specifications per ee in VLSI design is not yet commonly embraced' (a diFiculty that also

exists in software). Accordingly, much of the research commonly suggested in the rollowing sec-

tion is directed toward demonstrating this value. Without a greater base of agreemct op the

merits of VLSI specifications, research into this topic will be difficult to support.

For example, as anonymous referee wrote, in response to an earlier partial draft on this research, "As a designer I
hate formal description languages and the idea of executable specifcations. I think both interfere with my ability to
design electively."

'



5.1 Suggestion* for Future Research.

A substantial amount of follow-on work remains to be done in abstract interface

specification of VLSI designs, let alone in the application of software technolog.y to VLSI design

change management, for which several broad research projects were enumerated in chapter 1.

Here are some of the tasks needed to carry on the work in abstract interface specification.

5.1.1 Evaluate Approach's Usefulness with Other Base Languages.

The abstract interface specification method described in this dissertation used CSP as a

medium of expression, preferring CSP to standard programming languages because of its capabili-

ties for segregating scheduling concerns from functional. Other modern languages for concurrent

programming have been introduced: would the use of these languages, rather than CSP, make

representation of abstract interface specifications significantly easier? In particular, the VHSIC

Hardware Description Language (VHDL) [Dewe84, Shah85] uses Ada 2 control structures both for

multitasking and for modular decomposition. At the same time, the VHDL is a more hardware-

oriented language than CSP, suggesting that it might be possible to use the proposed technique

for specification and yet specify more compactly with richer primitives.

5.. Investigate Approach's Usefulness for Top-Down Design.

Circuit designers, as section 2.3 notes, are most comfortable with clear-box specifications, a

specification technique that leads to bottom-up design. It would be revealing to discover ho%

easily designs could be constructed top-down in practice using the proposed approach: for exam-

ple, by assigning a desirable capacitance and clock rate to a module pin before the module's inter-
nals had been laid out and simulated to learn these parameters.

5.2.8 Specify Global Constraints Better.

At present, there is no efficient way of specifying constraints global to the design module

(e.g., power consumption, current draw, tessellation, aspect ratio) using the proposed approach. I

believe this difficulty to be minor relative to the gains in practical scalability, complexity control,

and change management which the proposed approach achieves; nevertheless, the perceived cost-

effectiveness of the approach would be enhanced by a solution.

2 Ad& is a trademark of the U.S. Department of Defense

.1~ %. -. 0-
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5.0.4 Ezploit Adherence Concepts.

Quantizing the utility of specifcation adherence, as suggested herein, is a concept that could

be exploited further. To do this, adherence functions need to be better understood and to be

easier to use. One possible way to begin this would be to develop by experience a general set of

adherence functions and rules for their interpretation and use. Based on the existence of such a

set of functions, meaning could be assigned to k-adherence for particular values of k, so that, for

example, "90%-adherence" would have a commonly-understood meaning in the design commun-

ity. Other related research topics include investigating the effect of composition on k-adherence

and determining whether adherence functions are the best way of expressing the value of adher-

ence.

5.f.5 Study Use of Approach for Wider Range of Designe.

It would be useful to learn the applicability of the proposed approach in retroactively speci-

fying interfaces of designs originally implemented in technologies other than nMOS and in design
styles other than synchronous, full-custom. The usefulness of the method for specifying interfaces

of designs intended for analog implementation should also be investigated.

5.2.6 Refine Approach with Feedback from a Good Implementation.

I fully agree with Brooks [Broo82] in his statement that the most productive software

engineering principle to be developed in the last ten years is the "incremental build" appoach of

Harlan Mills [Myer84]. With this approach, rather than to conduct additional theoretical

research. I believe it would now be far more productive to refine the ideas expressed in this disser-

tation using feedback from the VLSI design community. To do this, one should develop and field
a set of good tools implementing the proposed approach, tools that include a well-engineered

designer interface. Without such a set of tools and designer interface, it is fruitless to expect that

already-overextended designers can be induced to use the proposed approach sufficiently to render

a fair evaluation.

One should not, however, underestimate the cost of such tool development, a cost several

times the cost of constructing a mere "snapped-together" implementation of the speciEcation

principles proposed herein [Broo75]. I began this research proposing to build and collect feedback

from such :, set of tools, and it was not until I had invested numerous weeks in them that I

I "

...............
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realized they would, without an order of magnitude more effort, be unacceptably clumsy and

"unmarketable" (even grati.) to VLSI designers. Despite the current interest in reducing such

costs through capital-intensive methods [Wegn84J, the costs of building prototype design tools

that are effective in obtaining essential feedback remain a major current impediment to methodo-

logical research. This statement leads to my final suggestion.

5.1. 7 Further Evaluate Approach'. Extensibility.

It is coiamon for Ph.D. dissertations to include in their final section the phrase, "The exten-

sibility of the proposed approach to very large designs at an acceptable cost has not yet been

demonstrated." This dissertation is no exception; such demonstration of extensibility, although in

a final sense "the proof of the pudding," is well beyond dissertation scope. Meta-research is

needed, now that complexity and matters of scale are dominant concerns in so many engineering

research fields, to determine ways of verifying, at acceptable cost, the extensibility of proposed

techniques to real-world-size problems.

Nevertheless, in the absence of methods for proving extensibility, it would be wrong to give

• .- up. There is much precedent for the subsequent and successful large-scale application of ideas

that germinated, without certainty of extension, on a modest scale in a laboratory. It is too early

to tell whether the ideas set forth herein will enjoy such application, but I am thankful to have

had the opportunity to develop them.

P-.
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APPENDIX A

SPECIFICATIONS OF MODULES IN TEST SET

Contents'

Fiue Module Semantic Level Syntactic Level
B-6,7 plashin functional immaterial
3-6 plashin four-strength immaterial
A-1 plashin drive-load immaterial
A-2 plasbin four-strength pingrid
A-3 fublk drive-load immaterial
A-4 malu drive-load immaterial
A-5 wasp functional immateral

4"

See Table 4-1 for module descriptions, Table 3-2 for level descriptions. (The mirt two specifications appear in
Appendix B ad Am Chapter 3, respectively.)
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plash in
Module Specification

ASSUMPTIONS

Synopsis: LSSD memory element: static memory cell that can convert to a shift register.
Size: delta x - 18 lambda; delta y m 90 lambda
Description-01: Data is shifted from left to right.
Description-02: p2sh = p2 AND sb; p2shbar = p2 AND (NOT sh); plshbar - pl OR (NOT

sh)
Notes-Ol: Control signals can be generated by cell rwcntl.
RelatedDocumentation: See manual pages for rwcntl and LSSD memory.
Tesselation: Cells abut vertically to form registers of arbitrary length that shift from left to

right.
Origin-Ol: Originally derived from Stanford Cell Library cell PlaShiftln (CIF ID 81).
Origin-02: Minor modiflcatins by Hedlund (UNC) and Lospinuso (UNC).

SPECIFICATION LEVEL

Semantic: drvioad
Syntactic: immaterial

PINS

Name AccFn C/D
scin GScanln C
scout PScanOut D
routbar P-DataOut D
p2sh S Shift D
p2shbar S -Hold D
plshbar SRecirculate D

INTERNAL STATE VARIABLES

left
right

STATE VARIABLE ATTRIBUTE INITIALIZATIONS

SCIN.maxloadcurr = 275
SCOUT.mindrivecurr = 2750
ROUTBAR.mindrivecurr = 2750
1'2SIH.maxloadcurr = 300
P2SHBAR.maxloadcurr = 300
P1SHBAR.maxloadcurr - 350
left.mindrivecurr 2750
left.maxloadcurr 2 275
right.mindrivecurr = 2750

* right.maxloadcurr - 275

Figure A-1. plaphin Specification.
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ACCESS FUNCTIONS

GScanln: none

P-PataOut:

#* Access function P-D.ataOut:

routbar - ROUTBAR -~skip;

P....canOut:

#* Access function P-.ScanOut:

scout = SCOUT - skip;

S-Sbift:

# Access function ,..Shift:

? P2SH = p2sh -

# SS - signal(P2SH);
# ST = signal .threshold (P2SH);

SS >= ST!-.
?SCIN = scin;

# steer(SCIN,P2SH,left);
# inv(left,ROUTBAR);

SS < ST - skip;

SHold:

#* Access function S.Hold:

?P2SHBAR = p2sh bar
# SliI = signal (P2SHI3AR);
# ST = signal threshold(P2SHBAR);

[SH>= ST-
# steer (SCOUT,P2SI{BAR,left);

ISH <ST - skip;

S_Recirculate:

/* Access function SRecirculate:
#/
?PISHBAR = plabbar -

* # SR = sign al(PISHBAR);
# ST = signal -threshold(PISH-BAR);

ISR >= ST-
# steer (ROUTBAR,PISHBAR,right);

# imy (right, SCOUT);
SR < ST -. skip;

%: 
Figure A-1. platthin Specification (Continued).
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DATA TYPE DEFINITIONS
/* Data Type Definition:
* Drive-Load semantic refinement level.
* This is a very simple electrical model with
* symmetric rise/fall times.
* Immaterial syntactic refinement level.

* At this level the state variable data structure is
* typedef struct stvar (
S* int sigvartyp;
* int sigvoltage;
* int sigcurrent;
* int mindrivecurr;/* Semantic attribute */
* int maxloadcurr; /. Semantic attribute ./
* })STVAR;
* with* sigvartyp - variable type (= drive-load/immaterial);

* sigvoltage = drive/load voltage (millivolts)
* sigcurrent - average drive/load switching current
* (nanoamps)
* mindrivecurr = specified minimum drive current
* (nanoamps)
* maxloadcurr = specified maximum load current
* threshold (nanoamps)

#define VHIMAX 5000
#define VHIMIN 3800
#define VTH 3750
#define VLOMAX 1200
#define VLOMIN 250

abs(i)
int i;{

return ((i > 0) ? i :);}

inv(stinput,stoutput)
STVAR *input, *output;

4
output-.sigvartyp = i.put--sigvartyp;
if ((input--sigvoltage <= VTH)

&& (-input-,sigcurrent >= output-ma.loadcurr)) (
output--sigvoltage - VHIMAX;
output-sigcurrent - output-mindrivecurr;
}

else if ((input--sigvoltage >=- VHMIN)
0- (input--sigcurrent >= output--maxloadcurr)) {

output-*sigvoltage - VLOMIN;
output-sigcurrent = -output--*mindrivecurr;
}

output-sigvoltage - undefined (VLOMIN, VHIMAX);
output--sigcurrent -

Figure A-I. pflahin Specification (Continued).
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undefined (--output-mindrivecurt,
output-mnindrivecurr);

return;

uignal(input)
2 STVAR *input;

retutn(abs(input-sigcurrent));

signalthreshold(input)
* STVAR *input;

return(input-maxoadcurr);

steer(input,control,output)
STVAR *input, *control, *output;

output-sigv arty p -input-sigvarty p;
if ((control-sigvoltage >== VHIMIN)

&& (control-sigcurrent >= con trol- maxloadcurr)){
output-sigvoltage - input-sigvolta-re - VTH;

output-sigcurrent = input-sigcurrent;

else'
output-sigvoltage = undefined (VLOMIN, VHIMAX);
output-sigcurrent -

undefined (-control -mind rivecurr,
control-mindrivecurr);

return;I
undefined (lo, hi)

int lo, hi;
/'undefined' represents a condition specified as
*illegal. It returns a value for the purposes of
*executability in the specification interpretation.
*This value should either cause the interpretation
*to terminate or it should cause aberrant behavior,
*in either case alerting the designer to potential
*difficulty.

return ((hi-lo)SO.5);

Figure A-1. plashin Specification (Continued).
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N" ADHERENCE FUNCTION DEFINITIONS

Access Fn f Adherence Funclion aff]

PDataOut a(q,x) -
- xra ui

ii sip*, .. P 83,.

ae the n variables in the sip data type,
xO = PDataOut(q), and
0 < x < xO;

1, otherwise.

PScanOut a(q,x) =
* x-..aig,

where

Siot, 8 2, • , tig.

are the n variables in the sip data type,
xO - P_ScanOut(q), and
0< x <xO;

= 1, otherwise.

S_Shift
Let

SJ Shift (q's) {V1, tv ...,Vk

and
S..Shif (q s) t-- t , ',. k

where {tp) is the set of values, of the module state variables, that make up the

module state q. Then

a(q,s,q' ) = max (0, rain (1, in Min . )).
i-il i Uj--*rag,

Uq

Figure A-1. plashin Specification (Continued).
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S.Hiold t

S Hold(qh) vz,... Pt)-

and

where {vj) is the set of values, of the module state variables, that make up the
module state q. Them

cr(q,h,q ) max (0, sim (1, ma mm-----)
j i V)-*o

SRecirculate

Let

S Recirculate (qr) = , (v % .~ ..Vk

and

SLRecircudatc (q' ,r) i 4 , tf,

where (v,) is the set of values, of the module state variables, that make up the
module state q. Then

a(q,r,q' max (0, mim (1, ki is4

Note: The adherence functions defined above are the Linear Ramp (LR) functions introduced in
* - section 3.4. Because their definitions are (unfortunately) complex, we shall abbreviate them as

follows in the remainder of this appendix:
alnf defined for will be abbreviated as
PDataout LRI IP _DataOutl (q,x)
S-Shift LRD [S...Shiftl (q,s,q')

Figure A-1. plathin Spec fication (Continued).
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plashin 1
Module Specification

ASSUMPTIONS

* (Same as for previous specification (A-i))
* SPECIFICATION LEVEL

Semantic: Four-strength
Syntactic: Pingrid

PINS

(Same as for previous specification (A-i))

INTERNAL STATE VARIABLES

(Same as for previous specification (A-i))
STATE VARIABLE ATTRIBUTE IN1TIALIZATIONS

SCIN.varxpo6 = 0 SCIN.varypos =2
SCOUT.varxpcis = 6 SCOUT.varypos = 2
ROUTBAR.varxpos 1 ROUTBAR.varypos =21
P2SH.varxpos = 0 P2SH.varypos = 0
P2SHBAR.varxpos - 0 P2SHBAR.varypos = 1
PISHBAR.varxpos - 0 PISHBAR.varypos = 18

ACCESS FUNCTIONSJ
(Same as for previous specification (A-1))

DATA TYPE DEFINITIONS
fe Data Type Definition:
* Four-strength semantic refinement level.
* Pingrid syntactic refinement level.

*At these levels the state variable data structure is
* typedef stvar {

* mt sigvartyp;
* mt sigfval;
* mt sigstrength;I
* mt varxpos; /* Syntactic Attribute *
* mt varypos; /*Syntactic Attribute *

* )STVAR;
*with

* sigvartyp = variable type (=four-strength/pingrid);
* sigfval - functional value
* in (0,1,9 (- undefined));

* * sigstrength = signal strength in
* {O (= unknown),
* 1 (=floating),
* 2 (=steered),
* 3 (=restored))

* with signal strength codes semantically ordered
(i.e. i > j - strength i> strength j);
varxpos xstate variable grid position;

J. Figure A-2. plashin Specification.
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* varypos -y state variable grid position.

(Operator definitions same as for Figure 3-8)

ADHERENCE FUNCTION DEFINITIONS

(Semantic adherence functions identical to those given for Figure 3-8. Additional functions fol-
low for measuring syntactic adherence. Note that the evaluation of these functions is indepen-

* - dent of module state, and that therefore this evaluation can take place statically.)
Access Fn f Adherence Function a14l

P-DataOut a(q,s) =1, s-e-varxpos = ROUTBAR-i+varxpos
and s--.varypos :5 ROUTBAR-vaypos + 1;

-0 otherwise.

P-S.canOut a(q,s) =1, s-*varypos = SCOUT-varypos
and s--.varxpoes < SCOUT--'varxpos + 1;

- 0 otherwise.

SShift cr(q,s) - 1, s-varypos - P2Sh--*varypos
and s--*varxpoe P2SH-*varxpos - 1;

= 0 otherwise.

SHold cr(q,s) = 1, s-+varypos = P2SHBAR-va,7pos
and s-.vYarxpos > P2SHBAR-varxpos - 1;

- 0 otherwise.

S-Recirculate a(q,s) = 1, s-+varypos =PISHBAR-varypos

and s--.varxpos 2t PISHBAR-varpos - 1;
-0 otherwise.

I

Figure A-2. plushin Specification (Continued).
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fablk
Module Specification

ASSUMPTIONS

Synopsis: ALU function block

Size: delta x - 42 lambda; delta y -80 lambda

Description: (M. Lospinuso) The function block receives two inputs, the data register (BUFOUT)
and the accumulator (ACOUT). The logic operation performed by the function block is
specified by the four function block control lines M0, fl, f2, and M3. The function block opera-
tions are listed below:
controls output mnemonic controls output mnemonic
M01 23 M0 12 3
0000 0 zero 1000 (B+A)' BnorA
0001 BA' BandA' 1001 A' A'
0010 BA BandA 1010 (BxorA)' BxnorA
0011 B B 1011 (131A)' BorA'
0100 B' A B' andA 1 100 B' B'
o001 BxorA BxorA 11 01 (BAY' BnandA
01 10 A A 1110 (BA')' B' orA
01 11 B+A BorA 111 I1 one

Related-Doe umen tation: WAfer-Scale Systolic Processor (WASP) Project Technical Note, "dp2
Data Path Module Specifications," July 6, 1984

Origin-O: WASP 1.0, K. Hledlund (UNC)
SPECIFICATION LEVEL

Semantic: Drive-load
Syntactic: Immaterial

PINS

Name AccFn /
acout S....cout D
acoutbar S-acoutbar D

-*bufout S-bufout D
bufoutbar Sjbufoutbar D
fnout P_(nout D
abin P-sbin D
fj13J SJ(B1 D B=0O..3

INTERNAL STATE VARIABLES

U tIBI, B=0..3

Figure A-3. fnblk Specification.



STATE VARIABLE ATTRIBUTE INITALIZATIONS
ACOUT.maxloadcurr -275

ACOUTBAR.maxloadcarr -275

BUFOUT.inaxoadcurr -275

BUFOUTBAR.ma~coadcurr - 275
FNOUT.inindrivecarr = 500
SBIN.inindrivecurr - 50000
F!BI.maxloadcurr - 275, B-O.-3
tIBI. mind rivecurr - 2750, B-O..3
t[BJ.maxloadcurr - 275, B=0. .3

ACCESS FUNCTIONS

Pjfnout:

/* Access function Pjfnout.
fnout =FNOUT -. skip;

P...sbin:

/* Access function Psbin:
fnout = FNOUT - Fkip;

S...acout:

#* Access function S acout:
?ACOt'T = acout

# SA =signal(ACOUT);

# ST =signaLthreshold(ACOUT);

ISA >= ST -

# steer(Fl,ACOL'T,t);
# steer(t,BUFOUTBAR,tl);
# steer(F2,BUFOUT,t);

# steer(t,ACOUT,t2);
# arbitrate4 (tO,tl,t2,t3,FNOUT);

# samenode (FNOUT,SBIN);
SA < ST - skip;

N S-acou tbar:

*. Access function S acoutbar:
?ACOUTBAR = acouffat -

* SA = sign-.i(ACOUTBAR);
# ST = sign althresb old(ACOUTBAR);

SA >- ST -

# steer(FO,BUFOUTBAR,t);
# 9teer(t,ACOUTBAR,t0);
# steer(F3,BUFOUT,t);

# steer(t.ACOUTBAR,t3);
# arbitrate4 (tO,tl,t2,L.3,FNOUT);
# sarnenode (FNOUT,SBIN);KSA <ST-.skip;

Figure A-3. fnblk Specification (Continued).
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Sbufout:

/* Access function Shbufout:
tBUFOUT - bufout -

# SA - signal(BUFOUT);
# ST - sigu&Lthreshold(BUFOUT);

[SA >- ST -

* steer(F2,BUFOUIT,t);
# steer(t,ACOUT,t2);

# steer(F3,BUFOUT,t);
# steer(t,ACOUTBAR,t3);

# rbitrate4 (tO,tl,t2,t3,FNOUT);
# samenode (FNOUT,SBIN);

ISA < ST - skip;

S-bufoutbar:

# Access function S-bufoutbar: .
?BUFOUTBAR =bufoutbar -

#SA = signal(BUJFOUTBAR);
* T =signal threshold(BUIFOUTBAR);

SA >= ST -

# steer(FO,BUFOUTBAR,t);
# steer(t,ACOUTBAR,tO);

% # steer(F1,ACOUT,t);
# steer(t,BUTFOUTBAR,tI);
# rbitrate4 (tO,tl,t2,t3,FNOUT);
# annenode (FNOUT,SBIN);
SA <ST-'skip;

/* Access function 5.50:
?FO =fO -~ skip;

#* Access function S-fi:
?F1 fI - skip;

S-32:

/' Access function 53f2:
?F2 =f2 -*skip;

Figure A-3. fnbik Specification (Continued).



S-f3:11

/S Access function 533M:
? F3 - M3 - skip;
DATA TYPE DEFINITIONS

(Same as for Figure A-1, with the following operations added:)

arbitrate4 (vazIvar2,vaz3,var4,varout)
STVAR *var1 svar2,*var3,*var4,*varout;

/* This is a very simple arbitration strategy.1
varout-.+sigvoltage M

max (varl-sigvoltage, var2-sigvoltage,
var3-esigvoltage, var4-sigvoltage);

varout-sigcurrent
max (van.-bsigcumrent, var2-sigcurrent,

var3--qsigcurrent, var4-sigcurrent);
varout--4sigv arty p = varl-sigvartyp;

samenode (varl,var2)
STVAR *varl, *var2;

var2-.*sigN- arty p =varI--*sigvartyp;

var2--.sigvoltage =varl-sigvoltage;

var2--.sigcurrent =var 1-osigcurrent;

ADHIERENCE FUNCTION DEFINITIONS

Access Fn f Adherence Function afll
S-.acout LRD IS-s..cout] (q,s,q'
S-acotitbar LRD IS.-.coutbarl (q,s,q')
S-bu fou t LRD IS bufout] (q,s,q' )
S-bufoutbar LRD [S-bufoutbarJ (q,s,q'
S_(0 LRD IS-f0I (q,s,q')
S_ i LRD IS fIll (q,s,q')
S-32 LRD IS f21 (q,s,q')
S_( 3 LRD jS331 (q,s,q' )
P_(fnout LRI [P fnouti (q,s)
P.. sbin LRI IP-sbinj (q,s)

Figure A-3. fnbik Specification (Continued).
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malu
Module Specification

ASSUMPTIONS

Synopsis: WASP 1.3 Minimal ALU. Performs 16 Boolean functions on two bits, one from the
accumulator and one bit from outside the data path. The Minimal ALU is the processing ele-
ment of the WAfer-Scale Systolic Processor (WASP).

Size: delta x = 209 lambda; delta y = 80 lambda

Description: Major component parts: input buffer (dynamic storage during execute, pseudo-static
with phi2 refresh during instruction load), accumulator (pseudo-static storage), inverter pair,
function block, and superbuffer (listed sequentially, left to right).

The function block receives two inputs, the data register (BUFOUT) and the accumulator
(ACOUT). The logic operation performed by the function block is specified by the four func-
tion block control lines fO, fl, f2, and 3.

The accumulator is a pseudo-static storage cell. Its input can come from the data register
(oceztp2), the current accumulator (acrecpf), or the function block (acfnpf). In order to keep a
known value in the accumulator, one of its three input enable lines must be enabled during
every phil phase of an execute cycle. The accumulator value becomes undefined if more than
one accumulator control line is simultaneously high during any phi2 phase of an execute cycle.
The accumulator can be cleared with the accumulator clear line (acclrp2). During instruction
load the control line StHldHA2 goes high during each phif phase, and causes refresh of the
current accumulator value.

The output superbuffer receives the function block output. (Synopsis and Description written
by M. Lospinuso.)

RelatedDocumentation: WAfer-Scale Systolic Processor (WASP) Project Technical Note, "dp2
Data Path Module Specifications," July 5, 1984

Origin-01: K. Hedlund, M. Lospinuso, and E. Vook (UNC).

SPECIFICATION LEVEL

Semantic: Drive-Load
Syntactic: Immaterial

Figure A-4. malu Specification.
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PINS

Name AccFn CID
fO S-M D
fi S-f1 D
f2 S2 D
M.f Sjf3 D
phil S..Phil D

*phi2 S..phi2 D
StHldHA2 S-StHldHA2 D
acfnp2 S..acfnp2 D
acbufp2 S...acbufp2 D
acrecp2 S...acrecp2 D
ClrAcpx S..ClrAcpx D
DtOut PDtOut D
Dtln GDtln C

INTERNAL STATE VARIABLES

ACINO
ACINI
B 'FINO
BUFINI

* FNOUT
t[B], B=0..3

STATE VARIABLE ATTRIBUTE INITIALIZATIONS

ACINO.rnindrivecurr =2750

* ACINO.maxloadcurr =275

ACIN1.mindrivecurr =2750

* ACINl.maxloadcurr =275

BUFINO.mindrivecurr =2750

L BUFINO.maxloadcurr =275

BUFINl.mindrivecurr =27.50

BUFIN Lm ax load curr =275

FNOUT.minidrivecurr =5000

* FNOUT.maxloadcurr 2 75
FfBI.maxloadcurr =275, B=0..3
t[BI.mindrivecurr = 2150, B=0..3
tIBI.maxlvoadcurr =2'75, B=0..3
PHIl.maxdoadcarr = 200
PH12.rnaxloadcurr =200
STHLDHA2.maxloadcurr = 275
ACFNP2.ma~doadcurr = 275
ACBUFP2.maxloadcurr = 275
ACRECP2.maxloadcuff = 275
CLRACPX.maxloadcurr = 300
SBIN.tnindrivecurr - 50000
DTIN.maxdoadcurr = 300

Figure A-4. malu Specification (Continued).
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ACCESS FUNCTIONS

GDtIn: none.

P..DtOut:

#* Access function P..DtOut:
DtOut =SEIN -~skip;

#' Access function S-fO:
? FO =fO -~ skip;

S-fi:

#r Access runction S_fi:
!F1 = fR -~ skip;

/*Access function S_12:
? F2 =f2- skip;

S-f3:

#* Access function S-f3: *
? F3 M -3 skip;

SSLHldHA2:

/ Access function S .StHIdHA2:
?STHLDHA2 = StHldHA2
# SA = sign aI(STHLDHA2);
# ST =sign althreshold(STHLDHA2);

[SA >= ST -

# steer(A 'IN,STHLDHA2,ACINO);
# steer(BUTFJNI,STHLDHA2,BUFINO);

SA~ < ST -. skip;

S..pbil:

# Access function S...phil: *
? PHIl = phil-
# SA = signal(PHII);
# ST = sign aLth reshold(PHI);

* [SA >=ST-
# steer(ACINO,STHLDHA2,ACINI);
# steer(BIFIN0,STHLDHA2,BUFIN1);

/* Evaluate function block
# inv(ACINl.ACOUTBAR);
# inv(BUFINl ,BUFOUTBAR);
# steerqfO,BUFOUTBAR,t);
# steer(t,ACOL7~BAR,tO);

Figure A-4. malu Specification (Continued).
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# steerqfl,ACINIt);
* # Bteer~t,BUFOUTBAR,tl);

w # steer(F2,BUFINI,t);
# teerqt,ACINI,t2);
# steer(F3,BUFIN1,t);

# stee~t,ACOUTBAR,t3);
# arbitrate4 (tO,tl,t2,t3,FNOUT);
# samenode (FNOUT,SBIN);

1SA < ST -skip;

S..pbi2:

/' Access function S...pi2: *
T PH12 = pbi2 -

# SA = sign al(PHI2);
# ST = sign altreshold(PHI2);

!SA >- T
?DTIN = Dtln;

# steer(DTIN,PHI2,BUFINO);
ISA < ST -~skip;

S-Wcfnp2:

/ Access function S_..acfnp2:
? ACFNP2 - acfnp .

# SA = signal(ACFNP2);
# ST = sign altreshold(ACFNP2);

I SA >=ST -
# steer(FNOUT,ACFNP2,ACINO);

ISA <ST - skip;

S-acbufp2:

#* Access function S-acbufp2: S
?ACBUFP2 = acbufp2 -

# SA = sign al(ACBUFP2);
# ST = sign althreshold (ACBUFP2);

I SA >=ST -
# steer(BUFIN1 ,ACBUTFP2,ACINO);

ISA < ST - skip;

S...acrecp2:

#' Access function S...arecp2:
?ACRECP2 = acrecp2 -

# SA = sign aI(ACRECP2);
# ST - sign alth resbold(ACRECP2);

# ST 4AIN,ACRECP2,ACINO);ISA <ST skip;

Figure A-4. malu Specification (Continued).



S...ClrAcpx:

/* Access function S_.ClrAcpx: "
? CLRACPX - ClrAcpx -

# SA - sign aI(CLRACPX);
# ST = sip al..th reshotd(CLRACPX);

SA <ST -skip;

DATA TYPE DEFINITIONS

(Same as for Figure A-3)
-* ADHER~ENCE FUNCTION DEFINITIONS

Access Fn f Adherence Fn f!
S-O LRD 15301 (q,s,q')
SJIl LRD lSJ11 (q,s,q' )
S f2 LW) [S f2 (q,q' )
S M LRD jS-f3j (q,s,q' )
S...Phil LRD (S...phil I (q,s,q' )
S...phi2 LRD IS..phi2l (q,s,q' )
SStHlldHA2 LRD jS...StHldHA2] (q,s,q')
S acfnp2 LRD IS...actnp4i (q,s,q')
S...acbufp2 LRD 1S .acbufp2l (q,s,q')
S-aerecp2 LRD fS_..acrecp2j (q,s,q(
SClrAcpx LRD jS-CIrAcpxj (q,s,q')
PDtOut LRI lP-DtOut] (q,s)

Figure A-4. maLu Specification (Continued).
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wasp
Module Specification

ASSUMPTICNS

Synopsis: WASP 1.3, WAfer-scale Systolic Processor.
Designed by Kye Hedlund, William Hargrove, Margaret Lospinuso, and Eric Vook, Univer-
sity of North Carolina at Chapel Hill, 1984.

For certain special-purpose computations, systolic architectures have the potential for very
high performance. A wafer-wcale implementation, in which processing elements are con-
nected by a mesh of programmable switches on a single wafer, offers the best means for

optimizing speed and reliability in systolic arrays. The smaller size and lower capacitance
of on-chip wiring permits higher speed than could be obtained with discrete chips and exter-
nal wiring. On-chip interconnection also brings greater reliability through a reduction in the
number of components, and the programmable switch matrix lessens the impact of faults by
permitting the inclusion of redundant processors and local exclusion of bad processors.

WASP 1.3, a prototype systolic wafer-scale processor, has an array of simple processors
embedded in a switch matrix. The processors are capable of performing all 16 Boolean func-
tions on two bits. The switches are programmable and can receive and send data in four
directions. The processing elements can also be programmed to receive and send data in four
different directions. Switch programming allows bad processors to be isolated from the net-
work, while level-sensitive scan design (LSSD) allows switch and processing element micro-
code to be shifted in at low pin cost.

Statistics:
9 processing elements
40 programmable switches
3860 transistors
2965 nodes
3000 x 3000 lambda
866 cm metal wire
621 cm polysilicon wire
407 cm diffusion wire

Description:
All elements (switches and PE's) of the 7 by 7 array in WASP 1.3 have the following SHARED
PROPERTIES:

1. Elements communicate only with their 4 NEAREST NEIGHBORS: (north, east, south, west)
2. Communication between elements is by a I-BIT SERIAL data stream.
3. Each element contains 8 state bits which indicate its ROUTING, i.e. its selection of input

and output streams (see 4, 5). These bits are scanned in when the machine is in LOAD
mode (pin name mgl = LOAD) and the shift contro! for the row containing the element is
ACTIVE (pin name shgl<R> = 1, R is row no.). Otherwise the current routing setting of
the element is retained.

4. As INPUT, each element reads from a SUBSET of the four directions. The results are not
defined when more than one direction is selected at a time.

5. As OUTPUT, each element sens data to a SUBSET of the four directions.

Figure A-5. wasp Specification.
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6. The selection of inputs and outputs are INDEPENDENT. It is not possible to scan in a new
setting for one without also scanning in a new setting for the other.

7. The element does not behave differently if its neighbor in any direction is a switch, pe, or
input-output pad pair. (An input-output pad pair always listens to its input and always
sends to its output. These pads are numbered d<rrlcl>-<r2c2> and effect the sending of
a signal from the element at row rl, col cl to the element at row r2, col c2, where either ri,
cl, r2, or c2 is an off-grid index (0 or 8)).

Overview of WASP 1.3 LOGICAL LAYOUT of elements:
1. The rows are numbered I to 7 from top (north) to bottom (south). The columns are num-

bered from 1 to 7 from left (west) to right (east).
2. Arrangement of elements: there are 7 rows of 7 elements each.
3. Pattern of elements:

Odd rows contain only switches.
Odd columns contain only switches.
PE's are at the intersection of even rows with even columns.

4. Due to a limitation in the number of available pads, input-output pad pairs are found only at
the ends of even rows or columns.

(Assumptions section written by Margaret F. Lospinuso and Eric R. Vook)
SPECIFICATION LEVEL

Semantic: Functional
Syntactic: Immaterial

PINS
Name AccFn C/ID

acclr Sacclr D
mgl Smgl D
philgi Sphilgl D
phi2gl Sphi2gl D
shglHLI[R G shgll-ILRIJ C R= 1..7
acscin[C] G_acscinlC C C=I..7
acscout[C] P-acscout[C] D C= ..7
d02_12 Gd02_12 C
d1202 P.d1202 D
d0414 Gd04_14 C
d1404 P-d1404 D
d06_16 G dO6_15 C
d 16_06 P d 1606 D
d28_27 G d28_27 C

d27_.28 Pd27_28 D
d4847 Gd48_47 C
d4738 P.d47_48 D
d"8.67 G..d68_67 C
d6768 P-d67-08 D
d82-72 G_d82_72 C
d72_82 Pd72_82 D
d84._.74 G_,474 C
d74 84 P d74..84 D

d36..76 G..d86..76 C
d76_86 P d76_86 D
d20_21 G.d20_21 C
d2l_20 P d2l_20 D

Figure A-5. wasp Specification.

47

•. .. . . . . . . . . . . .. q



d401 G..d40_41 C
d41..40 P..d41.40 D
d60..01 G d6061 C
d61_60 P.d61_M0 D

STATE VARIABLES

INDIRRIIC] R=1..7, C-i..7
OUTDIRRIICI R=1.7, C-I..7
FUNIRIiCl R=2,4,6, C=2,4,6
ACBUF[P[C l  R=2,4,6, C=2,4,6
ACRECIRJICI R=2,4,6, C=2,4,6
ACFNRIICI R=2,4,6, C=2,4,6
ACINoIRIlCI R=2,4,6, C=2,4,6
ACINIjRJjCJ R=2,4,6, C=2,4,6
BUFINOIRJIC] R=2,4,6, C=2,4,6
BTFINIJRIICI R=2,4,6, C=2,4,6
OUTRAIL[RI[C] R=0,2,4,6,8, C=0,2,4,6,8

STATE VARIABLE ATTRIBUTE INITIALIZATIONS

None.

ACCESS FUNCTIONS

# /*****************...........**ss****............./**

#1* Access function P acscout[Il:
acscout(l) = ACSCOUT1I - skip;

#/* Access function Pacscout[2:
acscout(2) = ACSCOUT121 -- skip;

#/***..*****..*.**.******.*****!oiss!**.*.**..*.**/

#/* Access function Pacscout[3l:
acscout(3) = ACSCOUT[31 - skip;

# /.******.*..*******.e****************e******.*****/.

#1* Access function P_acscout[4:
acscout(4) = ACSCOUT[41 -. skip;

# f****.**.***.**************..**.*****s***

#/" Access function Pacscout[5l:
acscout(S) = ACSCOUTi5] - skip;

- # ************************************************
" #/* Access function P-acscout[6l:

acscout(6) = ACSCOUT[61 - skip;
# /*.******,********,*s**........*****/***,*******,,*

#/* Access function Pacscout7]:
I acscollt(7) = ACSCOUT[71 - skip;
#**/*****.**.il....**...i*********.**.*****.****/
#/* Access function S accIr:
? ACCLR = accir - skip;

#* Access function S-mgI:
?MGL = mgl - skip;

#/* Access function S..philgl:
? PHIIGL = philgi -.

I PHIIGL == I--
LMGL ==I-

Figure A-5. wasp Specification (Continued).
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* printf ("Execute phase, phil entered');
* for (R-2; R<8; R+-2) ( for (C-2; C<8; C+=2){

* /* Compute Output Value
* steer(ACINO[RIICIPUIlGLACINl[Rj[C]);
* steer(BUFINO[RIICI,PUIGL,BUFINl [RIICI);
#fnblk (FUN[RJ [C ,BUFINI IRilCI,ACIN1 [RilCI,

/* Send Output, if appropriate *
#if ((OUTDIRjlII2j&l) != 0){

# ~getinswitch(1,2,inswitch);
# ~D12-02 = OUTRAIL~inswitcLiOilinswitch~lI1;

#if ((OUTDIR1114j&l) != 0)(
get..jnswitch(1,4,inswitch);
Dl4_04 OUTRAlLIinswitch[OiIlinswitchI if;

if ((OUTDIRJlj[6j&I) != 0){
*get-.inswitch( l,6,inswitch);

D1606P = OUTRAIL[iinswitch[0JJlinkswitchI Ifl;

* if ((OUTDIRj2I1lj&8) != 0){
get-inswitch(2,1,inswitch);
D2120 = OUTRALLinswitch[Oljjinswitchil]l;

* if ((OUTDIR[4jljj&8) != 0){
get-inswitch(4,l,inswitch);

# ~D41-40 - OUTRAILlinswitch[0JJlinswitch~l 11;

#if ((OUTDIRI6IjlI&8) != 0)(
# getinswitch(6,1,inswitch);
# D61-.0 = OUTRAILfinswitch[Ojjfinswitch[ iJJ;

# if ((OUTDIR7Jj21&4) != 0){
# get-nswitch (7,2,in switch);

#D72_82 =OUTRAILlinswitchJI11inswitcblIl;

# if ((OUTDlRf7j[4j&4) != 0) (
# get nswitcb(7,4,inswitcb),
# D74.84 = OUTRAIlinswitcb,0fl ins'witchi 111;

# if ((OUTDIRI7jI6I&4) != 0)
# getjinswitch(7,6,inswitch);

# D76..86 = OUTRAILlinswitch[ljlinswitchl 111;

#if ((OtITDIR[2jj71&2) != 0){
# getjnswitch(2,7,inswitch);

lei #D27_..28 - OUTRAILlinswitchiljJinswitchllll;

# if ((OUTDIRI4I[71&2) != 0)(

# get...inswitch(4,7,inswitch);
# ~D47_48 = OUTRAELlinswitchlOlllinswitchl 111;

# if ((OUTDIR161!71&2) != 0){
*get-inswitch(6,7,inswitch);

Figure A-S. weep Specification (Continued).
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*D67..68 -OUTRAIL~inswitchIOllinswitch~lII;

MGL =-0-

# printf ("Load phase, phil entered");
# for (R-1l; R<8; R++) (

V SHGLHL1[Rj - shgUI~(R);

for (C-1; C<8; C++){
ACSCOUT[CJ - ACSCIN[C];

I ̂ ((MGL=-1)I(MGL 0O)) -~ skip;
# / If MGL not defined, nothing *

*# / * is to happen. '

PUIGL =-0 -~ skip;

* #/~~ Access function S-.phi2gl: s
?PH12GL = phi2gl -

IPH12GLu -.
[MGL == I-
# printf ("Execute phase, phi2 entered");

# steer(BUFINlIRIICI,ACBUFIRIICI,ACINOIRI 101);
# steer(OUTRAILIRJICI,ACFNRIICI ,AOINOIRI [CJ);
#steer(ACIN1[RJ [CI,ACRECI[ Cj,ACINOIRIICI);
# steer(GND,ACCLR,ACINORJ[CJ);

# if (INDIR[112J = 1)
?OUTRAILIO1[21 = d0212;

# if (INDIR11j41 == 1)
? OUTRAILIO1141 = dD4_14;

# if (INDIR[11j61 -= 1)
?OUTRAILOII61 = d06-16;

# if (INDIR[21J1 == 8)
? OUTRAIL121101 d2Q..21;

# if (INDIR[411lj -= 8)
? OUTRAIL4[1 = d40.41;

# if (INDIR1611lJ == 8)
? OUTRAIL6IOI d6Q.61;

# if (INDIR171I21 == 2)
? OUTRAIL18[21 d82...72;

# if (INDIR171141 == 2)
? OUTRAIL[81141 =d84-74;

# if (INDIRI71161 == 2)
? OUTRAILI81161 d86_76;

# if (INDIR21171 == 4)
? OUTRAIL2f81 = d28...27;

# if (INDIR141171 -= 4)
* ? OUTRAIL[41[81 = d 47;

# if (INDIR16J7 - 4)
?OUTRAIL6[PJ = d6867;

# for (R=2; R<8; R+=2) ( for (C=2; C<8; C+=2)(
*# /* Locate Input Source *

#if (INDIR[RJICj != 0)(
# getjinswitch(R,C,inswitch);
# BUFINOIRIICJ

Figure A-5. wsp Specification tContinued).
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* OUTRAlLlinewitcbh101linswitchl11;

# else BUFNOIRI[CI - 9;

I MGL =- 0-
# printf ("Load phase, phi2 entered");
# / Docunmented StHIdHA2 signal is

/equivalent to PHI2GL & (MGL)'.
# steer(ACINI[RIICI,PHI2GLACINO[R]ICj);
# steer(BUFINIIRIIC],PH2GL,BUFNO[R]ICI);

S/* 'BIT' is a counter which */
/* keeps track of which bit */

# /* of the 15-bit control stream */
# /* is currently being entered. */

if (BIT=-I5) BIT=-
# for (C=1; C<8; C++) (

? ACSCIN[CJ - aescin(C);
# for (R-1; R<8; R++) {
# if (SHGLHL1Rj --- 1)
# /* Bit stream is encoded into */
#* integers here as follows: */
# /" 0,1,13,14 - BIT 14 "/
#/* 2,3,11,12 - BIT 12

/* 4,5,6,7 - BIT 7
# /* Others as shown below:*/
# if (BIT== 7) FUNIRIIC] - ACSCINIC;
# if (BIT== 8) ACFN[R]ICI = ACSCIN[C];
# if (BIT== 9) ACRECIRIIC l - ACSCINICI;
# if (BIT=-=10) ACBUF[R][C] - ACSCIN[CJ;
# if (B f---12) OUTDIRIRIICI = ACSCINICI;
# if (BIT--==14) INDI[R][C] = ACSCIN[CJ;

# -BIT++;I ^((MGL== I)11(MGLm z0)) - skip;

P1I12GL == 0 - skip;

# **.........*s*********..s...**..*...*.s.s******/
#/* Access function P-d12.02: I

d12._l.02 = D12_.02 - skip;

t, Access function P d14 - 4: *
d14_04 = D1404 - skip;

#/* Access function Pd16_06:
d16_06 = D1606 - skip;

* 'p/* Access function Pd27_28:
!d2728 = D2728 -. skip;
#/******************************* * ** * * /
#/* Access function Pd47_48: 0/

d4748 D47_48 -. skip;

Figure A-5. war, Specification (Continued).
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f/* Access function P.d67._68:
! d67_68 - D67_68 -. skip;

f/* Access function Pd72..82: *1
I d72..82 - D72_82 --. skip;

f/s Access function Pd74_84: 5/

d74_84 = D74_84 -* skip;
# /ss***s..s..s*...s..s**e..**ss*ss*sssssss*ssessssss*ssse/

#/* Access function P-d 7 k_8 6 : */
d76_86 = D76_86 - skip;

#/* Access function Pd21_20: */

!d21_20= D2120 --* skip;

#1' Access function P.d41_40: */
d41_40 = D41_0 - skip;

#/* Access function P.d61f;:
d61_60 = D61_0 - skip;

DATA TYPE DEFINITIONS

/* Data Type Definition:
* Functional semantic refinement level.
* Immaterial syntactic refinement level.

* At this level the state variable data structure is
* typedef struct stvar {
* int sigfval;
* ) STVAR;
* with
* sigfval - functional value in (0,1,9 (=undefined)};

* For efficiency, operatiors are defined on integers
* instead of with reference to this equivalent
* structure.

/* Operator Definitions are the same as for Figure B-7,
with the following operations added: */

/* 1. Operations on state variables:

fnblk (funindex,stv arl ,stv ar2,stv arout)
int funindex;
int stvarl, stvar2;
int *stvarout;4

if ((stvarl==9) II (stvar2==9)){
stvarout 9;

return;
%
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switch (funindex){
case 0:

*stvarout -0;

return;
case 1:

*stvarouL =stvarl & (1-atvar2);
return;

case 2:
*stvarout =stvarl & stvar2;

-~ return;
case 3:

2* *stvarout =stvarl;

return;
case 4:

*Stvarout =(1-stvarl) & stvar2;
return;

c ase 5:
*stvarout = stvarl stvar2;
return;

case 6:
*stvarout = stvar2;
return;

case 7:
*stvarout =stvarl stvar2;
return;

case 8:
*stvarout =1-(stvarl jstvar2);
return;

case 9:
*stvarout = -stvar2;
return;

c ase 10:
estvarout =1-.(stvarl stvar2);
ret urn;

case 11:
*stv'arout =1-((1-stvarl) & stvar2));
return;

case 12:
*stvarout = I 6tvarl;
return;

case 13:
*stvarout = 1-(stvarl & stvar2);
return;

case 14:
p *stvarout = 1-(stvarl & (1-stvar2));

return:
case 15:

3 ~*stvarout =1

return;
default:

printf("Bad function value %od' ,funindex);
/ * Such error flags are not part of the specification.
* They are included merely for assistance in detecting
* errors during verification. See section 3.3.1.3 for
* a discussion of differences between specifications

Figure A-5. wasp Specification (Continued).
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2 * and simulators.

*stvarout=

return;

/* 2. Local closed subroutines, included for efficiency
0 to replace in-line subroutines.

getjinswitch(cuffrrow,currcol,inswitch)
int currrow, currcol;
int inswitch[2J;

* Function name: get -nswitch
* Parameters: currrow: (input) row of active PE

%: or switch
* currcol: (input) column of active PE

* or switch
* inswitch: (output) row and column of PE

* or switch which provides input
4 * to the active PE or switch

*Assumptions: 7x7 grid of switches/PE's
*External References:

* INDIR (matrix of input switch settings)

OUTDIR (matrix of output switch settings)
*Author: R. Gross, March 1985

switch (TiNDIR~currrowJ [currcol])

case 1: /* North
newrow=currrow-1;
newcol=currcol;
break;

case 2: 1* East
newrow=currrow;
newcol=currcol+ 1;
break;

'acase 4: /* South
newrow=currrow+ 1;
newcol=currcol;

break;
case 8: /* West *

newrow=CLurrrow;
newco!-currcol-1;
break;

default:
q printf ("Bad value %d in INDIR[%djf%dJ.",

INDI[currrow][currcoll,currrow,currcol);

Figure A-5. wasp Specification (Continued).
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p.-intf (*A value of 1 haa been assumed.*);
newrow=currrow-1;
newcol=curreol;

/* Consistency Test '
if ((newrow !=borderl) && (newcol !- borderl) &&

(newrow !=border2) && (newcol != border2) &&
((invert (INDIIR[curffowj[currcoll)

& OUTDlRjnewrowljnewcolJ) ==0))

printt(" Inconsistency:");
printf ("INDIRI%dII%dI=%d, OUTDIRI%dj[%dI =%d",

currrow,currcol,INDIR[currrowlicurrcoll,
newrow,newcol,OUTDIR[newrowj InewcolD);

inswitchlol = newrow,
inswitchjl] = neweol;
if ((newrow !=borderl) && (newrow '-border") &&

(newcol !=borderl) && (newcol != border2) &&
(((niwrow & 1) != 0)1 ((newcol & 1) ! 0)))

cunfrow =newrow;
cufrcol =newcol;

goto loop;

return;

in t
invert (dir)

int dir;

* Function name: invert
* Parameters: dir: (input) 1, 2, 4, or 8, representing

* N,E,S,W respectively.
*Returns: Input 1 2 4 8

*Output 4 8 1 2
*Assumptions: Input is valid
*External References: None
*Author: R. Gross, March 1985

switch (dir)

cae1( eun()
case 2: return (4);
case 2: return (8);
case 4: return (1):

default: return (0);

Figure A-S. Wa8p Specification (Continued).
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ADHERENCE FUNCTION DEFINITIONS

Access Fn f Adherence Function ca[f!
P-acscout[CJ a(q,s) - 1 if a - Pacscout[CJ;

C=1..7 - 0 otherwise.
S-acclr cr(q,s,q' I if q' - S-acclr(q,s);

=0 otherwise.
-- S_mgl a(q,s,q' I if q' - S mg(q,s);

=0 otherwise.
S...philgl c(q,s,q' I if q' - Sphilg(q,s);

-0 otherwise.
S...phi2gI cr(q,s,q' I if q' = S-phi2gl(q,s);

=0 otherwise.

Figure A-S. wasp Specification (Continued).
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APPENDIX B

ILLUSTRATION OF SPECIFICATION EXECUTION

doutpt doutpt doutpt

! Cl) (2) "'" (8) o

n U

p t
t p

plashin plashin plashin t

Cl) (2) (8)

control

To execute this interconnection of eight 'plashin' shift register cells, I used 19 simple module
processes. In addition to the 'plashin' module process, which was obtained by copying the
specification (see Figure 3-6):

- 'doutpt(i)' reported module-specific output from each register cell;

- 'inpt' and ',utpt' provided and reported register test input and output, respec*ively; and

- 'control' was an environment process which provided control stimuli.

Each module process was specified independently of the others; only a simple "channel file" (con-
taining only eyntactic information) was used to describe interconnections. The CSP/84 language,
described in section, 3.3 of the text, was the medium used for representing both module process

specifications and the channel file.

This specification execution was performed at a functional refinement level; with minor
modifications, interpretations at a more refined level (not presented here) were also obtained.
Also, with suitable type conversion mechanisms included in specification data type definitions,
mixed-refinement-level execution was obtained (e.g., 'doutpt' was specified at a lesser refinement
level than 'plashin'). The same channel file sufficed throughout.

So
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# Name: uplashin

# Function: This is a -plashin-cell interconnection.
# One must set n in the first statement.

# Author. R. Gross, October 1984

set n 8

arr ay piashin 1:n
arr ay doutpt L:

# datapath:
connect inpt.ScOut to plashin(1).Scln

for i 2: n
connect plashin(i-I).ScOut to plashin(i).Scln
connect plashin(i-I).DOut to doutpt(i-I).DIn
end for

connect plashin(a).Scout to outpt.ScIn
7-Zconnect plasbin(n).DOut to doutpt(n).DIn

# control:
for i 1:na
connect control.s(i-1) to plashin(i).s
connect control.r(i-1) to ptashin(i).r
connect control.h(i-1) to plashiw(i).h
connect control.od(i-1) to doutpt(i).od
endfor
connect controlos to outpt.OS

Figure I-I. Channel File.
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##include <stdio.h>
process control::

output port int as8);
output port int h(g);
output port iant 8);
output port int od(8);
output port int os;

int CELLS;
int count;
char command;
char linellOo0;
int i;

command = '

CELLS = 8;

$[ command !- 'q'

# printf ("Enter 9 for shift, h for hold, q for quit:");
# fgets(line,100,stdin);
# command = linel[O;

# /* Shift:
/* stimulate shift (s) SI
/* and recirculate (r) repeatedly. *1
/* o is used to trigger the printed output.

command == '' -'

for (i- 0; i < CELLS; i++) {
s(i) = 1;

for (i= 0; i < CELLS; i++) {
s(i) = 0;

#
for (i= 0; i < CELLS; i- +) {

od(i) = 1;

!os 1;
for (i = 0;i < CELLS; i++){!r(i)---- 1;

#}
# for (i = O;i < CELLS; i++){

r(i) = 0;

for (i= 0; i < CELLS; i++) {
!od(i) f 1;

# S }

! s 1

Figure B-2. control Module Process.
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*'-. /*Hold: :I
* /, stimulate hold (h)
* /* and recirculate (r) repeatedly. S/

- /* o is used to trigger the printed output.

command -- Vh
# for (i = O;i < CELLS; i++)

A ! h(i) - 1;

for (i = O; i < CELLS; i++){
h(i) = 0;

# for (i = 0; i < CELLS; i++){
! od(i) = 1;

os= 1;
# for (i = 0; i < CELLS; i++) {

r(i)#= 1;

for (i = 0; i < CELLS; i++) {
r(i) = 0;

#t for (i= 0; i < CELLS; i++) {
od(i) = 1;

>03 II

end process

Figure B-2. control Module Process (Continued).

':"4 :" " , , , . . .,:" t. , "-"-" . . . .," , : : '. :".". :" . . , " ' . . . . . " .-."" ."" :"':. " . . . -" . .



133

#include <stdio.h>
process doutpt::
guarded input port int od;

input port int Din
int val;
intO;

#/. read and print output values

*[?0 od-.
0 1-

? val - Din;
# printfq"Data Output Cell %d value %d",

cspproc..num, val);
# flush (stdout);

O=O- skip;

end process

Figure B-3. doulpf Module Pr, -ess.

N =: :,:-i .:: _: -. .:.-:i;:.-;-:;::.:-:: :::;: .::.:::;:::::..;. : ... :.:::...::-:..:-; :-:;.4 .,.--. -4,4..4-4. .,
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##include <stdio.h>
process inpt:

output port int Scout;

!scout -0-
! scout -0-

scout -1;
!scout - 1;
scout - 0;
scout - 0
scout - 1;
!scout - 1;

scout 0;

end process

Fiur B-.ip ouePoes
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##include <stdio.b>
process outpt::
guarded input port int os;

input port int Scn;
int val;
int O;

# 1 read and print output values

•[?0 =os--
0 1-

? val = Scn;
# printf("Scan Output value = %d", val);
# mush (stdout);

10 ==- 0 skip;

end process

. D"I

II. 'Fiue -.oup odl roes

4. . - ,. . . _ . - . . - . .-- . -. - . . . .. . --.. --4- . . ... . - . - . - - . .. .. .- . ...- - .. . "
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##include <stdio.h>
process plashin ::

input port int Scl;
guarded input port int 8;
guarded input port int h;
guarded input port int r;
guarded output port int ScOut;
guarded output port int DOut;

int left
mt right;
mt DOlT;
int SCIN;
jnt SCOUT;
int S
int H;
nt R;

#/0 Initialize.
#1* 9 means undefined.

left - 9;
right = 9;

#1* Poll input ports:

# /***************************************************/r

#1* Access function PDOut:

DOut = DOUT - skip;

#/* Access function PScOut:

ScOut = SCOUT skip;

#1* Access function S.s:

# SS = signal(S);
# ST = signal threshold(S);

SS >= ST--
? SCIN - Scln;

# steer(SCIN,S,left);
# inv(left,DOUT);

SS < ST- skip;

Z.,

Figure -6. p1 hAin Module Process.rJ " 2_i~...:.:*~::*:***:*. ~~...*-
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*/* Access function Sh:

?H-h-.
# SH - signal(H);
# ST m signalthreshold(H);

I SH >- ST -

# steer (SCOUTH,Ieft);
SH < ST -. skip;

S#1 Access function S r:

# SR - signal(R);
# ST - signal_threshold(R);

SR >= ST-'
# steer (DOUT,R,right);
# inv (right, SCOUT);

SR < ST -. skip;

end process

Figure B-6. plamhin Module Process (Continued).

S. C- wl-
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/* Data Type Definition:
* Functional semantic refinement level.
* Immaterial syntactic refinement level.

*At this level the state variable data structure is

wit typedef type(= 1

sinaty =ivrtp

sigfval = functional value in (0,1,9 (=undefined))

#define INFINITY 65535

inv(varl,var2)
STVAR *varl, *var2;

var2--sigvartyp =varl-sigvartyp;
var2-sigfval - (varl-sigfval -= 9)

return; ? 9: (1 - varl-.+sigfval);

int
signai(varl)

VAR *varl;

return(IINFINITY);

int
signal-thresbold(varl)

VAR *vrl;

return(O);

steer(v ar ,v ar2,v ar3)
STVAR ovarl, *var2, *var3;

var3-sigfvary - (v2igfval 1

var3-+sigfvatp (va2-sigfval -- 1)
!varl-sigfvat var3-sigvat

Figure B-7. Data Type Definitions.

.~. **.*.~*.*.*.......... ......... . * *-.. h
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(User input preceded by TU')

Ul: csp -o rtyp.def.o nplashin control
U: (same line, cont'd) doutpt inpt outpt plashin

channel file is nplashin
control:
doutpt:
inpt:
outpt:
plashin:

*. Linking.
Running.
Enter s for shift, h for hold, q for quit:

UI: s
Data Output Cell I value 1
Data Output Cell 2 value = 9
Data Output Cell 3 value = 9
Data Output Cell 4 value = 9
Data Output Cell 5 value = 9
Data Output Cell 6 value = 9
Data Output Cell 7 value = 9
Data Output Cell 8 value = 9
Scan Output value = 9
Data Output Cel! 1 value = 1
Data Output Cell 2 value = 9
Data Output Cell 3 value = 9
Data Output Cell 4 value = 9
Data Output Cell 5 value = 9
Data Output Cell value = 9
Data Output Cell 7 value = 9
Data Output Cell 8 value = 9

Enter s for shift, h for hold, q for quit:
Scan Output value = 9

5%%

Figure 1B-8. Sample Output.

bISO Ne '-Ar
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Data Output Cell I value = I
Data Output Cell 2 value - I
Data Output Cell 3 value - 9
Data Output Cell 4 value - 9
Data Output Cell & value - 9
Data Output Cell 6 value - 9
Data Output Cell 7 value - 9
Data Output Cell 8 value - 9
Scan Output value - 9
Data Output Cell 1 value = I
Data Output Cell 2 value = 1
Data Output Cell 3 value = 9
Data Output Cell 4 value = 9
Data Output Cell 5 value = 9
Data Output Cell 6 value = 9
Data Output Cell 7 value = 9
Data Output Cell 8 value - 9
Enter s for shift, h for hold, q for quit:
Scan Output value = 9

U: h
Data Output Cell I value I 1
Data Output Cell 2 value I 1
Data Output Cell 3 value = 9
Data Output Cell 4 value = 9
Data Output Cell 5 value = 9
Data Output Cell 6 value = 9
Data Output Cell 7 value = 9
Data Output Cell 8 value - 9
Scan Output value = 9
Data Output Cell I value = 1
Data Output Cell 2 value = 1
Data Output Cell 3 value = 9
Data Output Cell 4 value = 9
Data Output Cell 5 value = 9
Data Output Cell 6 value = 9
Data Output Cell 7 value -- 9
Data Output Cell 8 value -- 9

Enter s for shift, h for hold, q for quit:
Scan Output value = 9

LU: q
alt fail line 74,control.c(O). error 1
write line 7,inpt.c(O). error 3

Figure B-8. Sample Output (Continued).

!V.N
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